Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It?

Pharmaceutics

Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara-West Bekaa, Bayrut P.O. Box 146404, Lebanon.

Published: April 2024

AI Article Synopsis

  • Overcoming the poor bioavailability and rapid metabolism of resveratrol is crucial for its potential use in clinical settings, as it is not metabolically stable enough to be an effective drug.
  • Various strategies to enhance resveratrol's therapeutic effects include combining it with existing chemotherapy drugs, chemically modifying it to improve its bioavailability, and using nanoparticles to enhance absorption and targeted delivery.
  • These approaches show promise for treating various cancers and lay the groundwork for future research to advance resveratrol as a viable clinical therapy.

Article Abstract

Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053528PMC
http://dx.doi.org/10.3390/pharmaceutics16040569DOI Listing

Publication Analysis

Top Keywords

resveratrol
9
enhancing bioavailability
4
bioavailability resveratrol
4
resveratrol combine
4
combine derivatize
4
derivatize encapsulate
4
encapsulate it?
4
it? overcoming
4
overcoming limited
4
bioavailability
4

Similar Publications

Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection.

View Article and Find Full Text PDF

Nonylphenol (NP) is a ubiquitous environmental endocrine disrupting chemical and oxidative stress inducer in biological systems. Resveratrol (RES) and Naringenin (NG) are phytochemicals possessing antioxidant properties and estrogenic activity. This study was conducted to investigate the toxicity of NP and the mitigating effects of RES and NG on NP toxicity in rats.

View Article and Find Full Text PDF

Enhanced Endothelialization Using Resveratrol-Loaded Polylactic Acid-Coated Left Atrial Appendage Occluders in a Canine Model.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China.

Left atrial appendage occlusion (LAAO) is a well-established alternative to anticoagulation therapy for patients with atrial fibrillation who have a high bleeding risk. After occluder implantation, anticoagulation therapy is still required for at least 45 days until complete LAAO is achieved by neoendocardial coverage of the device. We applied a polylactic acid-resveratrol coating to the LAAO membrane to enhance endothelialization with the goal of shortening the anticoagulation therapy duration.

View Article and Find Full Text PDF

Bone marrow hematopoietic injury encompasses a range of pathological conditions that disrupt the normal function of the hematopoietic system, primarily through the impaired production and differentiation of bone marrow hematopoietic cells. Key pathogenic mechanisms include aging, radiation damage, chemical induction, infection and inflammation, and cross-talk with non-hematopoietic diseases. These pathological factors often lead to myelosuppression and myeloid skewing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!