As internal curing self-healing agents in concrete repair, the basic properties of superabsorbent polymers (SAPs), such as water absorption and release properties, are generally affected by several factors, including temperature and humidity solution properties and SAP particle size, which regulate the curing effect and the durability of cementitious composites. This study aimed to investigate the water retention capacities of SAPs in an alkaline environment over extended periods by incorporating liquid sodium silicate (SS) into SAP-water mixtures and examining the influence of temperature. The influence of SAP particle size on mortar's water absorption capacity and mechanical behavior was investigated. Two mixing techniques for SAPs (dry and pre-wetting) were employed to assess the influence of SAP on cement mortars' slump, mechanical properties, and cracking resistance. Four types of SAPs (SAP-a, SAP-b, SAP-c, and SAP-d), based on the molecular chains and particle size, were mixed with SS to study their water absorption over 30 days. The results showed that SAPs exhibit rapid water absorption within the first 30 min, exceeding 85% before reaching a saturation point, and the chemical and temperature variations in the water significantly affected water absorption and desorption. The filtration results revealed that SAP-d exhibited the slowest water release rate, retaining water for considerably longer than the other three types of SAPs. The mechanical properties of SAP mortar were reduced due to the addition of an SAP and the improved cracking resistance of the cement mortars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054658 | PMC |
http://dx.doi.org/10.3390/polym16081158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!