AI Article Synopsis

  • PMMA is a versatile polymer with excellent properties, but incorporating nanoparticles enhances its electrical and mechanical characteristics, creating multifunctional PMMA nanocomposites.
  • Various nanoparticles, including carbon nanotubes, titanium oxide, and carbon quantum dots, were integrated into PMMA using a straightforward solution method to prepare freestanding composite films.
  • Characterization techniques like SEM, XRD, and UV-Vis spectroscopy revealed that the CNT/PMMA composites exhibited high electrical conductivity, TiO/PMMA demonstrated effective photodegradation, and CQD/PMMA displayed notable fluorescence compared to other composites.

Article Abstract

Polymethyl methacrylate (PMMA) is an interesting polymer employed in various applications due to its outstanding properties. However, its electrical and mechanical properties can be further improved by incorporating nanoparticles, and in particular, PMMA nanocomposite with nanoparticles provides various multifunctional properties. This work reports PMMA nanocomposite preparation and structural and optical characterizations incorporating carbon nanotubes (CNTs), TiO nanoparticles, and carbon quantum dots (CQDs). CNT/PMMA, TiO/PMMA, and CQD/PMMA nanocomposite freestanding films were prepared using a simple solution method. Various properties of the prepared composite films were analyzed using scanning electron microscopy, X-ray diffraction, photoluminescence, Fourier transform infrared, and UV-Vis and Raman spectroscopy. Optical parameters and photocatalytic dye degradation for the films are reported, focusing on the properties of the materials. The CNT/PMMA, TiO/PMMA, and CQD/PMMA films achieved, respectively, good electrical conductivity, photodegradation, and fluorescence compared with other composite films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053758PMC
http://dx.doi.org/10.3390/polym16081048DOI Listing

Publication Analysis

Top Keywords

polymethyl methacrylate
8
nanocomposite freestanding
8
freestanding films
8
pmma nanocomposite
8
cnt/pmma tio/pmma
8
tio/pmma cqd/pmma
8
composite films
8
properties
6
films
6
optical shielding
4

Similar Publications

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Facile Access to Highly Efficient 3D Printing Using Robust Self-Healing CDs/Polymer Hybrids.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.

3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing.

View Article and Find Full Text PDF

Chiral Resolution and Chiroptical Properties of Hindered Tetraphenylethylene Helicates.

Org Lett

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Hindered tetraphenylethylene (hTPE) helicates are resolved into two left-handed (M) and right-handed (P) isomers by linkage and removal of chiral auxiliary (1,2,5)-menthol, furnishing gram-scale hTPE enantiomers via flash silica column chromatography. hTPE helicate enantiomers bearing electron-accepting cyano and electron-donating triphenylamine groups can emit deep-blue CPL signals with a fluorescence quantum yield surpassing 50%. Full-color and white-light emission were achieved by blending them with dyes in a poly(methyl methacrylate) (PMMA) film.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.

Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!