Energy Consumption for Furniture Joints during Drilling in Birch Plywood.

Polymers (Basel)

Department of Furniture Design, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, ul. Wojska Polskiego 38/42, 60-627 Poznan, Poland.

Published: April 2024

The purpose of this study is to support eco-design ideas and sustainable manufacturing techniques by examining the energy consumption related to drilling holes for different furniture connections. The experimental model is a simple piece of furniture made from birch plywood with three different types of joints. Eccentric joints, confirmat screws, and dowel measurements of energy consumption with a CNC drilling and milling machine show different values for every kind of connector. The energy consumption was measured using a portable power quality analyzer, specifically the PQ-box 150 manufactured by A:Eberle GmbH & Co. KG Nürnberg, Germany. This device likely adheres to industry standards for energy measurement, ensuring accurate and reliable results. The measurement process involved recording energy consumption at different stages of the machining process, allowing for the analysis of specific cutting work and total energy consumption for various joint types. Dowels exhibit the lowest energy consumption at 0.105 Wh for one furniture joint, confirmat screws at 0.127 Wh, while eccentric joints, despite their higher energy consumption (0.173 Wh), offer enhanced transportability and assembly flexibility of a piece of furniture. Specific cutting power for one selected piece of furniture was 227.89 J/mm for dowels, 190.63 J/mm for eccentric joints and 261.68 J/mm for confirmat screws.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054301PMC
http://dx.doi.org/10.3390/polym16081045DOI Listing

Publication Analysis

Top Keywords

energy consumption
32
piece furniture
12
eccentric joints
12
confirmat screws
12
energy
9
birch plywood
8
specific cutting
8
consumption
7
furniture
6
joints
5

Similar Publications

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Associations between anthropogenic heat emissions and serum lipids among adults in northeastern China.

Int J Environ Health Res

January 2025

Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Few epidemiological studies have investigated associations between anthropogenic heat emissions (AE) and serum lipids. We recruited 15,477 adults from 33 communities in northeastern China in 2009. We estimated AE flux by using data on energy consumption and socio-economic statistics covering building, transportation, industry, and human metabolism.

View Article and Find Full Text PDF

Background: Understanding the impact of caffeine intake on body composition is a topic of growing research interest. The article "Association Between Caffeine Intake and Fat-Free Mass Index: A Retrospective Cohort Study" by Tian et al. explored this relationship, highlighting a positive correlation between caffeine consumption and fat-free mass index (FFMI).

View Article and Find Full Text PDF

Background: Climate change is a global challenge, caused by increasing greenhouse gas (GHG) emissions. Dental clinical practice contributes to these emissions through patient and staff travel, waste, energy and water consumption and procurement. Carbon footprinting quantifies GHG emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!