Microbial degradation of feathers offers potential for bioremediation, yet the microbial response mechanisms warrant additional investigation. In prior work, Gxun-7, which demonstrated robust degradation of feathers at elevated concentrations, was isolated. However, the molecular mechanism of this degradation remains only partially understood. To investigate this, we used RNA sequencing (RNA-seq) to examine the genes that were expressed differentially in Gxun-7 when exposed to 25 g/L of feather substrate. The RNA-seq analysis identified 5571 differentially expressed genes; of these, 795 were upregulated and 603 were downregulated. Upregulated genes primarily participated in proteolysis, amino acid, and pyruvate metabolism. Genes encoding proteases, as well as those involved in sulfur metabolism, phenazine synthesis, and type VI secretion systems, were notably elevated, highlighting their crucial function in feather decomposition. Integration of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) taxonomies, combined with a review of the literature, led us to propose that metabolic feather degradation involves environmental activation, reducing agent secretion, protease release, peptide/amino acid uptake, and metabolic processes. Sulfite has emerged as a critical activator of keratinase catalysis, while cysteine serves as a regulatory mediator. qRT-PCR assay results for 11 selected gene subset corroborated the RNA-seq findings. This study enhances our understanding of the transcriptomic responses of Gxun-7 to feather degradation and offers insights into potential degradation mechanisms, thereby aiding in the formulation of effective feather waste management strategies in poultry farming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052024 | PMC |
http://dx.doi.org/10.3390/microorganisms12040841 | DOI Listing |
Pathogens
January 2025
Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
Viruses in the family can infect mammals and birds. Porcine circovirus type 2 (PCV2) significantly affects the livestock industry by causing porcine circovirus-associated diseases, such as postweaning multisystem wasting syndrome, respiratory disease complex, and dermatitis nephropathy syndrome. Additionally, beak and feather disease virus in parrots, canine circovirus in dogs, and columbid circovirus (pigeon circovirus) in racing pigeons induce immunosuppression, followed by secondary infections in these hosts.
View Article and Find Full Text PDFBiodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFPoult Sci
January 2025
School of Animal Science and Technology, Foshan University, Foshan 528225, China. Electronic address:
This study aimed to investigate the effects of reducing inorganic trace minerals (ITM) by supplementing compound organic trace minerals (OTM) chelates on growth performance, fecal mineral excretion, intestinal health, and cecal microbiota of yellow-feathered broilers. A total of 960 one day old male broilers were randomly assigned to 6 treatments, among which birds were fed with the basal diets (negative control, NC), or supplemented with 1,000 mg/kg (positive control, PC), 300, and 500 mg/kg ITM or OTM, respectively. Dietary supplementation of OTM significantly increased the average daily gain (ADG) during 22-53 d and 1-53 d, and reduced the fecal emissions of Fe, Cu, Zn, and Mn of Chinese yellow-feathered broilers (P < 0.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Polyketide synthases (PKSs) are crucial multidomain enzymes in diverse natural product biosynthesis. Parrots use a type I PKS to produce a unique pigment called psittacofulvin in their feathers. In domesticated budgerigars and lovebirds, the same amino acid substitution (R644W) within malonyl/acetyltransferase (MAT) domain of this enzyme has been shown to cause the blue phenotype with no psittacofulvin pigmentation, proposing a strong evolutionary constraint on the mechanism.
View Article and Find Full Text PDFFront Vet Sci
December 2024
State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
Introduction: The reasonable and efficient utilization of agricultural by-products as animal feed has the capacity to not only mitigate the scarcity of conventional feedstuff but also alleviate the environmental load. This study was aimed to investigate the effects of feeding citrus pomace (CP) fermented with combined probiotics on growth performance, carcass traits, meat quality and antioxidant capacity in yellow-feathered broilers.
Methods: A cohort of 540 female yellow-feathered broilers (Qingyuan partridge chicken, 90-day-old) were randomly divided into three groups and, respectively, fed the basal diet (Control), diet containing 10% unfermented CP (UFCP) and diet containing 10% fermented CP (FCP).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!