Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Seedlings Infected with .

Microorganisms

Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru.

Published: April 2024

Avocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by . Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, and , was evaluated in terms of their biocontrol capacity against in the "Zutano" variety of avocado plants. The results showed that the GWI and combination increased the root exploration surface by 466.36%. increased aerial biomass by 360.44% and increased root biomass by 433.85%. Likewise, rhizobacteria showed the highest nitrogen (24.60 mg ∙ g DM) and sulfur (2.60 mg ∙ g DM) concentrations at a foliar level. The combination of GWI and was the treatment that presented the highest calcium (16.00 mg ∙ g DM) and magnesium (8.80 mg ∙ g DM) concentrations. The microorganisms' multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to represents a potential strategy for sustainable management of avocado cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052105PMC
http://dx.doi.org/10.3390/microorganisms12040721DOI Listing

Publication Analysis

Top Keywords

increased root
8
∙ concentrations
8
co-inoculation growth-promoting
4
growth-promoting bacteria
4
bacteria arbuscular
4
arbuscular mycorrhizae
4
mycorrhizae growth
4
growth seedlings
4
seedlings infected
4
avocado
4

Similar Publications

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

Flow environment affects nutrient transport in soft plant roots.

Soft Matter

January 2025

Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!