Heritability of Gene Expression Measured from Peripheral Blood in Older Adults.

Genes (Basel)

Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.

Published: April 2024

AI Article Synopsis

  • - The study explored how genetic variation and the environment affect gene expression in older adults, focusing on a community sample of 246 individuals (mostly female twins).
  • - Researchers found that about 24% of the analyzed genes showed heritability in blood gene expression, with 5269 significant probes identified, particularly linked to immune response and aging.
  • - Comparisons with other studies revealed that only a small fraction of heritable genes were common, underscoring the necessity of studying gene expression specifically in older populations.

Article Abstract

The contributions of genetic variation and the environment to gene expression may change across the lifespan. However, few studies have investigated the heritability of blood gene expression in older adults. The current study therefore aimed to investigate this question in a community sample of older adults. A total of 246 adults (71 MZ and 52 DZ twins, 69.91% females; mean age-75.79 ± 5.44) were studied. Peripheral blood gene expression was assessed using Illumina microarrays. A heritability analysis was performed using structural equation modelling. There were 5269 probes (19.9%) from 4603 unique genes (23.9%) (total 26,537 probes from 19,256 genes) that were significantly heritable (mean h = 0.40). A pathway analysis of the top 10% of significant genes showed enrichment for the immune response and ageing-associated genes. In a comparison with two other gene expression twin heritability studies using adults from across the lifespan, there were 38 out of 9479 overlapping genes that were significantly heritable. In conclusion, our study found ~24% of the available genes for analysis were heritable in older adults, with only a small number common across studies that used samples from across adulthood, indicating the importance of examining gene expression in older age groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11049887PMC
http://dx.doi.org/10.3390/genes15040495DOI Listing

Publication Analysis

Top Keywords

gene expression
24
older adults
16
peripheral blood
8
blood gene
8
expression older
8
genes heritable
8
expression
6
adults
6
genes
6
older
5

Similar Publications

TRIAGE: an R package for regulatory gene analysis.

Brief Bioinform

November 2024

Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.

Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.

View Article and Find Full Text PDF

Deep learning in integrating spatial transcriptomics with other modalities.

Brief Bioinform

November 2024

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Xuanwu District, Nanjing 210096, China.

Spatial transcriptomics technologies have been extensively applied in biological research, enabling the study of transcriptome while preserving the spatial context of tissues. Paired with spatial transcriptomics data, platforms often provide histology and (or) chromatin images, which capture cellular morphology and chromatin organization. Additionally, single-cell RNA sequencing (scRNA-seq) data from matching tissues often accompany spatial data, offering a transcriptome-wide gene expression profile of individual cells.

View Article and Find Full Text PDF

Combination therapies have emerged as a promising approach for treating complex diseases, particularly cancer. However, predicting the efficacy and safety profiles of these therapies remains a significant challenge, primarily because of the complex interactions among drugs and their wide-ranging effects. To address this issue, we introduce DD-PRiSM (Decomposition of Drug-Pair Response into Synergy and Monotherapy effect), a deep-learning pipeline that predicts the effects of combination therapy.

View Article and Find Full Text PDF

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.

View Article and Find Full Text PDF

Background: Extracellular matrix (ECM) proteins play a crucial role in regulating the biological properties of adherent cells. For cryopreserved fibroblasts, a favourable ECM environment can help restore their natural morphology and function more rapidly, minimizing post-thaw stress responses.

Methods And Results: This study explored the functional responses of cryopreserved enriched caprine adult dermal fibroblast (cadFibroblast) cells to structural [collagen-IV and rat tail collagen (RTC)] and adhesion ECM proteins (laminin, fibronectin, and vitronectin) under in vitro culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!