Domestication has shaped the diverse characteristics of rabbits, including coat color, fur structure, body size, and various physiological traits. Utilizing whole-genome resequencing (DNBSEQ-T7), we analyzed the genetic diversity, population structure, and genomic selection across 180 rabbits from 17 distinct breeds to uncover the genetic basis of these traits. We conducted whole-genome sequencing on 17 rabbit breeds, identifying 17,430,184 high-quality SNPs and analyzing genomic diversity, patterns of genomic variation, population structure, and selection signatures related to coat color, coat structure, long hair, body size, reproductive capacity, and disease resistance. Through PCA and NJ tree analyses, distinct clusters emerged among Chinese indigenous rabbits, suggesting varied origins and domestication histories. Selective sweep testing pinpointed regions and genes linked to domestication and key morphological and economic traits, including those affecting coat color (, ), structure (), body size (, ), fertility (, ), heat stress adaptation (), and immune response (, , ). Our study identified key genomic signatures of selection related to traits such as coat color, fur structure, body size, and fertility; these findings highlight the genetic basis underlying phenotypic diversification in rabbits and have implications for breeding programs aiming to improve productive, reproductive, and adaptive traits. The detected genomic signatures of selection also provide insights into rabbit domestication and can aid conservation efforts for indigenous breeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11049387PMC
http://dx.doi.org/10.3390/genes15040433DOI Listing

Publication Analysis

Top Keywords

coat color
16
body size
16
structure body
12
genetic diversity
8
selection signatures
8
including coat
8
color fur
8
fur structure
8
population structure
8
genetic basis
8

Similar Publications

Identifying Candidate Genes Related to Soybean () Seed Coat Color via RNA-Seq and Coexpression Network Analysis.

Genes (Basel)

January 2025

College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.

Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.

View Article and Find Full Text PDF

Morphological diversity variation of seed traits among 587 germplasm resources of Medicago Genus and 32 germplasm resources of Trigonella Genus.

Sci Rep

January 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Germplasm resources within the Medicago genus are highly regarded for their value as forage crops and their critical roles in nitrogen cycling, ecosystem restoration, and soil structure improvement. Therefore, understanding the diversity of seed morphology in this genus is essential for advancing its development and utilization. This study analyzed seed samples from 587 germplasm accessions representing 77 species within Medicago genus, as well as 32 accessions from 21 species within the closely related genus Trigonella.

View Article and Find Full Text PDF

PSC1, a basic/helix-loop-helix transcription factor controlling the purplish-red testa trait in peanut.

J Integr Plant Biol

January 2025

College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China.

Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat.

View Article and Find Full Text PDF

Background And Aim: Coat color is a phenotypic trait that is affected by many functional genes. In addition, coat color is an important characteristic of breeds in livestock. This study aimed to determine functional genes for coat color patterns in Sumatran native cattle in Indonesia using a genome-wide association study method.

View Article and Find Full Text PDF

Development of a novel and affordable point-of-care kit for rapid detection of urea and glucose adulteration in cow milk.

Anal Methods

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.

The increasing global population has raised the demand for cow milk, leading to its adulteration with harmful substances, including urea and glucose, that cause damage to humans when consumed regularly. Hence, this study started with predicting urea and glucose toxicity using ProTox-III software, wherein the results revealed that urea belongs to class IV with an LD value of 6350 mg kg and glucose belongs to class VI with an LD value of 23 000 mg kg. Then, a qualitative colorimetric kit and Fourier-transform infrared (FTIR) spectroscopy were used for the preliminary detection of urea and glucose in cow milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!