A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Low-Level Tragus Stimulation on Cardiac Metabolism in Heart Failure with Preserved Ejection Fraction: A Transcriptomics-Based Analysis. | LitMetric

Abnormal cardiac metabolism precedes and contributes to structural changes in heart failure. Low-level tragus stimulation (LLTS) can attenuate structural remodeling in heart failure with preserved ejection fraction (HFpEF). The role of LLTS on cardiac metabolism is not known. of 7 weeks of age were randomized into three groups: low salt (0.3% NaCl) diet (control group; = 6), high salt diet (8% NaCl) with either LLTS (active group; = 8), or sham stimulation (sham group; = 5). Both active and sham groups received the high salt diet for 10 weeks with active LLTS or sham stimulation (20 Hz, 2 mA, 0.2 ms) for 30 min daily for the last 4 weeks. At the endpoint, left ventricular tissue was used for RNA sequencing and transcriptomic analysis. The Ingenuity Pathway Analysis tool (IPA) was used to identify canonical metabolic pathways and upstream regulators. Principal component analysis demonstrated overlapping expression of important metabolic genes between the LLTS, and control groups compared to the sham group. Canonical metabolic pathway analysis showed downregulation of the oxidative phosphorylation (Z-score: -4.707, control vs. sham) in HFpEF and LLTS improved the oxidative phosphorylation (Z-score = -2.309, active vs. sham). HFpEF was associated with the abnormalities of metabolic upstream regulators, including PPARGC1α, insulin receptor signaling, PPARα, PPARδ, PPARGC1β, the fatty acid transporter , and lysine-specific demethylase 5A (KDM5A). LLTS attenuated abnormal insulin receptor and signaling. HFpEF is associated with abnormal cardiac metabolism. LLTS, by modulating the functioning of crucial upstream regulators, improves cardiac metabolism and mitochondrial oxidative phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050145PMC
http://dx.doi.org/10.3390/ijms25084312DOI Listing

Publication Analysis

Top Keywords

cardiac metabolism
20
heart failure
12
upstream regulators
12
oxidative phosphorylation
12
low-level tragus
8
tragus stimulation
8
failure preserved
8
preserved ejection
8
ejection fraction
8
abnormal cardiac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!