In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the and genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous AG and (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the and genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050655PMC
http://dx.doi.org/10.3390/ijms25084167DOI Listing

Publication Analysis

Top Keywords

exposed pesticides
16
chromosomal alterations
16
chromosomal instability
16
alterations chromosomal
12
instability clonal
12
clonal heterogeneity
12
chromosomal
10
chromosomal damage
8
genetic polymorphisms
8
susceptibility biomarkers
8

Similar Publications

The Benefit of Evolution of Pesticide Tolerance Is Overruled under Combined Stressor Exposure due to Synergistic Stressor Interactions.

Environ Sci Technol

January 2025

Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.

Despite pleas to consider both evolutionary and multistressor climate change perspectives to improve ecological risk assessment, the much needed combination of both perspectives is largely missing. This is especially important when evaluating the costs of the evolution of genetic tolerance to pollutants as these costs may become visible only under combined exposure to the pollutant and warming due to energetic constraints. We investigated the costs of chlorpyrifos tolerance in when sequentially exposed to 4-day pesticide treatments and 4-day heat spike treatments.

View Article and Find Full Text PDF

Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.

View Article and Find Full Text PDF

Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees.

Heliyon

January 2025

Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary.

The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) represents one of the biggest threats to health globally. The rise of AMR has been largely attributed to the misuse and abuse of antimicrobials in veterinary, human, and agricultural medicine. This study aimed to assess human, livestock, and agricultural health profiles, and practices of One Health and antibiotic use through a situational analysis of an Indigenous village Gurah, in a rural area of Mohali district in Punjab state using a demographic and facility survey.

View Article and Find Full Text PDF

Background: Fomesafen is a selective herbicide widely used to control post-emergent broad-leaf weeds in soybean and peanut fields. Because of its persistent nature in soil, it can suppress subsequent crops, including wheat. There is limited information focusing on methods of protecting wheat from fomesafen injury by soil residue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!