AI Article Synopsis

  • The article discusses neurotrophic keratopathy (NK), a condition caused by the loss of sensation in the cornea due to trigeminal nerve issues, and how surgical techniques have evolved to restore corneal sensitivity.
  • It highlights two main surgical approaches for corneal neurotization (CN): direct and indirect methods, which involve careful selection and preparation of donor nerves essential for successful outcomes.
  • Future advancements aim for less invasive techniques and the use of acellular nerve allografts, making CN a promising treatment option for NK, tailored to patient needs and surgical expertise.

Article Abstract

The article introduces neurotrophic keratopathy (NK), a condition resulting from corneal denervation due to various causes of trigeminal nerve dysfunctions. Surgical techniques for corneal neurotization (CN) have evolved, aiming to restore corneal sensitivity. Initially proposed in 1972, modern approaches offer less invasive options. CN can be performed through a direct approach (DCN) directly suturing a sensitive nerve to the affected cornea or indirectly (ICN) through a nerve auto/allograft. Surgical success relies on meticulous donor nerve selection and preparation, often involving multidisciplinary teams. A PubMed research and review of the relevant literature was conducted regarding the surgical approach, emphasizing surgical techniques and the choice of the donor nerve. The latter considers factors like sensory integrity and proximity to the cornea. The most used are the contralateral or ipsilateral supratrochlear (STN), and the supraorbital (SON) and great auricular (GAN) nerves. Regarding the choice of grafts, the most used in the literature are the sural (SN), the lateral antebrachial cutaneous nerve (LABCN), and the GAN nerves. Another promising option is represented by allografts (acellularized nerves from cadavers). The significance of sensory recovery and factors influencing surgical outcomes, including nerve caliber matching and axonal regeneration, are discussed. Future directions emphasize less invasive techniques and the potential of acellular nerve allografts. In conclusion, CN represents a promising avenue in the treatment of NK, offering tailored approaches based on patient history and surgical expertise, with new emerging techniques warranting further exploration through basic science refinements and clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050919PMC
http://dx.doi.org/10.3390/jcm13082268DOI Listing

Publication Analysis

Top Keywords

donor nerve
12
nerve
9
corneal neurotization
8
neurotrophic keratopathy
8
surgical techniques
8
gan nerves
8
surgical
6
insights choice
4
choice preparation
4
preparation donor
4

Similar Publications

Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Rare bilateral vascular variations of the upper limb: a cadaveric case study.

J Cardiothorac Surg

December 2024

Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.

Arterial variations in the upper limb are of significant clinical importance, especially in procedures such as venepunctures, coronary artery bypass grafts, trauma reconstructive surgeries, brachial plexus nerve blocks, and breast reconstructions. This report presents previously undocumented arterial variations in the upper limbs in a 95-year-old female cadaveric donor. We observed bilateral superficial ulnar arteries originating at the cubital fossa, deviating from the previously reported origin at the proximal brachial artery.

View Article and Find Full Text PDF

Background: For complete disruption of the posterolateral corner (PLC) structures, operative treatment is most commonly advocated, as nonoperative treatment has higher rates of persistent lateral laxity and posttraumatic arthritis. Some studies have shown that acute direct repair results in revision rates upwards of 37% to 40% compared with 6% to 9% for initial reconstruction. In a recent study assessing the outcomes of acute repair of PLC avulsion injuries with 2 to 7 years of follow-up, patients with adequate tissue were shown to have a much lower failure rate than previously documented.

View Article and Find Full Text PDF

A highly-sensitive fluorescent probe for the detection of copper ions and its applications in water quality monitoring, neural cell imaging and plant imaging.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

High copper levels pose a risk to environmental and human health due to their toxicity and widespread industrial application, in which abnormal copper levels are associated with various diseases both in neurodegenerative diseases and plant growth. Thus, a turn-on fluorescent probe BBYD-Cu, based on donor-acceptor type structure, was designed and synthesized with easy preparations. BBYD-Cu can specifically recognized Cu by 2-picolinic ester group, then released the fluorophore to enhance the fluorescent signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!