This pilot investigation identifies the influence that changing the process variables of curing pressure, curing temperature, and mix ratio of a polyurethane/agglomerated cork matrix has on the mechanical properties of energy absorption, Young's modulus of elasticity, and spring stiffness in safety helmets intended for micro-transport riders. The results are compared to expanded polystyrene, a material commonly used in micro-transport helmets. Mechanical testing of the various samples found that, over the range tested, curing pressure had no effect on any of the mechanical properties, while increasing amounts of resin caused a stiffer structure, and increasing curing temperature led to increased energy absorption. Consistent with the elastic modulus findings, all polyurethane/agglomerated cork test samples demonstrated higher median levels of spring stiffness, ranging from 7.1% to 61.9% greater than those found for expanded polystyrene. The sample mixed at a 1.5:1 binder/cork ratio and cured at 40 °C displayed the closest spring stiffness to EPS. While the mechanical properties of the eco-friendly polyurethane/agglomerated cork matrix did not match those of expanded polystyrene, the difference in performance found in this study is promising. Further investigation into process variables could characterise this more ecologically based matrix with equivalent energy-absorbing and structural characteristics, making it equivalent to currently used expanded polystyrene and suitable for use in micro-transport helmets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052006PMC
http://dx.doi.org/10.3390/ma17081925DOI Listing

Publication Analysis

Top Keywords

polyurethane/agglomerated cork
16
expanded polystyrene
16
process variables
12
mechanical properties
12
spring stiffness
12
changing process
8
curing pressure
8
curing temperature
8
cork matrix
8
energy absorption
8

Similar Publications

This pilot investigation identifies the influence that changing the process variables of curing pressure, curing temperature, and mix ratio of a polyurethane/agglomerated cork matrix has on the mechanical properties of energy absorption, Young's modulus of elasticity, and spring stiffness in safety helmets intended for micro-transport riders. The results are compared to expanded polystyrene, a material commonly used in micro-transport helmets. Mechanical testing of the various samples found that, over the range tested, curing pressure had no effect on any of the mechanical properties, while increasing amounts of resin caused a stiffer structure, and increasing curing temperature led to increased energy absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!