Hydrogen is a dangerous gas as it reacts very easily with oxygen and may explode; therefore, the accumulation of hydrogen in confined spaces is a safety hazard. Composites consisting of unsaturated polymers and catalysts are a common getter, where the commonly used polymer is 1,4- diphenylethynyl benzene (DEB). Silicone rubber (SR) is a good carrier for hydrogen-absorbing materials due to its excellent chemical stability and gas permeability. In this work, polysiloxane, water, and a emulsifier are ultrasonically injected into a uniform emulsion, and the hydrogen getter DEB-Pd/C (Palladium on carbon) is then added. Under the catalysis of platinum (Pt), the cross-linking agent undergoes a hydrosilylation reaction to cross-link polysiloxane in emulsion to form silicone rubber. Then, the water was removed by freeze-drying, and the loss of water constructed a porous frame structure for silicone rubber, thus obtaining porous silicone rubber. The difference in hydrogen absorption performance between porous silicone rubber and ordinary silicone rubber was compared. It was found that, with the increase in water in the emulsion, the porous frame of silicone rubber was gradually improved, and the hydrogen absorption performance was improved by 243.4% at the highest, almost reaching the theoretical saturated hydrogen absorption capacity. Porous silicone rubber was prepared by emulsion mixing, which provided a new idea for further improving the hydrogen absorption performance of silicone rubber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051936PMC
http://dx.doi.org/10.3390/ma17081921DOI Listing

Publication Analysis

Top Keywords

silicone rubber
40
hydrogen absorption
20
porous silicone
16
absorption performance
12
rubber
10
silicone
9
hydrogen
8
porous frame
8
porous
6
absorption
5

Similar Publications

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Surface Fluorination of Silicone Rubber with Enhanced Stain Resistance and Slip Properties.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.

Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.

View Article and Find Full Text PDF

Effect of Plasma Treatment on Coating Adhesion and Tensile Strength in Uncoated and Coated Rubber Under Aging.

Materials (Basel)

January 2025

Mechanical Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

The degradation of rubber materials under environmental and mechanical stress presents a significant challenge, particularly due to UV (ultraviolet light) exposure, which severely impacts the material's physical properties. This study aims to enhance the UV stability and longevity of rubber by evaluating the performance of modified polyurethane and silicone coatings as protective stabilizers. Natural rubber-styrene-butadiene rubber (NR-SBR), known for its exceptional mechanical properties, was selected as the base material.

View Article and Find Full Text PDF

Inchworm Robots Utilizing Friction Changes in Magnetorheological Elastomer Footpads Under Magnetic Field Influence.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea.

The application of smart materials in robots has attracted considerable research attention. This study developed an inchworm robot that integrates smart materials and a bionic design, using the unique properties of magnetorheological elastomers (MREs) to improve the performance of robots in complex environments, as well as their adaptability and movement efficiency. This research stems from solving the problem of the insufficient adaptability of traditional bionic robots on different surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!