To obtain high-quality joints of Al/steel dissimilar materials, a new extrinsic-riveting friction stir lap welding (ERFSLW) method was proposed combining the synthesis advantages of mechanical riveting and metallurgical bonding. SiC-reinforced Al matrix composite bars were placed in the prefabricated holes in Al sheets and steel sheets, arranged in a zigzag array. The bars were stirred and mixed with Al sheets under severe plastic deformation (SPD), forming composite rivets to strengthen the mechanical joining. SiC particles were uniformly dispersed in the lower part of the welding nugget zone (WNZ). The smooth transition between the SiC mixed zone and extrinsic-riveting zone (ERZ) ensured the metallurgical bonding. The maximum tensile shear load of the joints reached 7.8 kN and the maximum load of the weld per unit length was 497 N/mm. The fracture occurred at the interface between the rivets and steel sheets rather than the conventional Al/steel joining interface. Moreover, ERFSLW can prolong the service life of joints due to three fracture stages. This method can be further extended to the welding of other dissimilar materials that conform to the model of "soft/hard".
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051002 | PMC |
http://dx.doi.org/10.3390/ma17081830 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!