The issue of wellbore instability poses a significant challenge in the current exploration of shale gas reservoirs. Exploring more efficient shale stabilizers has always been a common goal pursued by researchers. In this paper, a novel shale stabilizer, denoted as ANS, was prepared by employing a silane-coupling modification method to graft (3-Aminopropyl) triethoxysilane (APTES) onto the surface of nano-silica. The structure of ANS was characterized through Fourier transforms infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), and particle size tests (PST). The shale stabilizing properties of ANS were evaluated through tests such as pressure penetration, BET analysis, hydration expansion and dispersion. Furthermore, the interaction between ANS as a shale stabilizer and clay was explored through clay zeta potential and particle size analysis. The results indicated that ANS exhibited a stronger plugging capability compared to nano-silica, as evidenced by its ability to increase the shale pressure penetration time from 19 to 131 min. Moreover, ANS demonstrated superior hydration inhibition compared to commonly used KCl. Specifically, it reduced the expansion height of bentonite from 8.04 to 3.13 mm and increased the shale recovery rate from 32.84% to 87.22%. Consequently, ANS played a dual role in providing dense plugging and effective hydration inhibition, contributing significantly to the enhancement of wellbore stability in drilling operations. Overall, ANS proved to be a promising shale stabilizer and could be effective for drilling troublesome shales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050847PMC
http://dx.doi.org/10.3390/ma17081776DOI Listing

Publication Analysis

Top Keywords

shale stabilizer
16
shale
9
novel shale
8
wellbore stability
8
ans
8
particle size
8
pressure penetration
8
hydration inhibition
8
evaluation aminated
4
aminated nano-silica
4

Similar Publications

Wellbore instability caused by hydration during the development of shale gas reservoirs poses significant challenges to drilling engineering. In this study, a novel and environmentally friendly shale inhibitor, TIL-NH, was synthesized via free radical polymerization using 1-vinylimidazole and N-(2-bromoethyl)-1,3-propanediamine dihydrobromide as the main raw materials. The molecular structure of TIL-NH was characterized by infrared spectroscopy and nuclear magnetic resonance.

View Article and Find Full Text PDF

In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.

View Article and Find Full Text PDF

Nothronychus graffami was a large therizinosaur represented by a single well-preserved individual from the Turonian Tropic Shale of southern Utah. It is characterized by an enlarged abdomen, small tail, and an extensively pneumatized axial skeleton, and is frequently regarded as herbivorous. Given the overall tail reduction and the development of a wide fused synsacrum with widely spaced acetabulae, it is reconstructed with an anteriorly rotated femur and a displaced resting ground reaction force anterior to the center of mass.

View Article and Find Full Text PDF

CO-soluble surfactant foam systems have gained significant attention for their potential to enhance oil recovery, particularly in tight oil reservoirs where conventional water-soluble surfactants face challenges such as poor injectability and high reservoir sensitivity. This review provides a comprehensive explanation of the basic theory of CO-soluble surfactant foam, its mechanism in enhanced oil recovery (EOR), and the classification and application of various CO-soluble surfactants. The application of these surfactants in tight oil reservoirs, where low permeability and high water sensitivity limit traditional methods, is highlighted as a promising solution to improve CO mobility control and increase oil recovery.

View Article and Find Full Text PDF

Microscopic pore characteristics of shale are very important for exploring the oil occurrence and content. However, previous studies on heterogeneous terrestrial shale are lacking. We choose the Shahejie formation (SF) of the Dongpu Depression in the Bohai Bay Basin as a case study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!