We aimed to differentiate the isocitrate dehydrogenase (IDH) status among non-enhanced astrocytic tumors using preoperative MRI and PET. We analyzed 82 patients with non-contrast-enhanced, diffuse, supratentorial astrocytic tumors (IDH mutant [IDH-mut], 55 patients; IDH-wildtype [IDH-wt], 27 patients) who underwent MRI and PET between May 2012 and December 2022. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) values using diffusion tensor imaging. We evaluated the tumor/normal brain uptake (T/N) ratios using C-methionine, C-choline, and F-fluorodeoxyglucose PET; extracted the parameters with significant differences in distinguishing the IDH status; and verified their diagnostic accuracy. Patients with astrocytomas were significantly younger than those with glioblastomas. The following MRI findings were significant predictors of IDH-wt instead of IDH-mut: thalamus invasion, contralateral cerebral hemisphere invasion, location adjacent to the ventricular walls, higher FA value, and lower MD value. The T/N ratio for all tracers was significantly higher for IDH-wt than for IDH-mut. In a composite diagnosis based on nine parameters, including age, 84.4% of cases with 0-4 points were of IDH-mut; conversely, 100% of cases with 6-9 points were of IDH-wt. Composite diagnosis using all parameters, including MRI and PET findings with significant differences, may help guide treatment decisions for early-stage gliomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048577 | PMC |
http://dx.doi.org/10.3390/cancers16081543 | DOI Listing |
J Pain Res
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Bone is a common site of advanced cancer metastasis, second only to the lungs and liver. Cancer-induced bone pain (CIBP) is a persistent and intense pain that is caused by a combination of inflammatory and neuropathic factors. As CIBP progresses, the degree of pain intensifies.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).
View Article and Find Full Text PDFJ Vet Diagn Invest
January 2025
Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
Tumoral macrocysts (grossly observable cysts) are common in human pilocytic astrocytomas but are rarely reported in canine astrocytomas. Here we describe 7 canine astrocytomas with macrocysts. The median age of affected patients was 9.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore.
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China.
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!