Background: The reproducibility of radiomics features extracted from CT and MRI examinations depends on several physiological and technical factors. The aim was to evaluate the impact of contrast agent timing on the stability of radiomics features using dynamic contrast-enhanced perfusion CT (dceCT) or MRI (dceMRI) in prostate and lung cancers.
Methods: Radiomics features were extracted from dceCT or dceMRI images in patients with biopsy-proven peripheral prostate cancer (pzPC) or biopsy-proven non-small cell lung cancer (NSCLC), respectively. Features that showed significant differences between contrast phases were identified using linear mixed models. An L2-penalized logistic regression classifier was used to predict class labels for pzPC and unaffected prostate regions-of-interest (ROIs).
Results: Nine pzPC and 28 NSCLC patients, who were imaged with dceCT and/or dceMRI, were included in this study. After normalizing for individual enhancement patterns by defining seven individual phases based on a reference vessel, 19, 467 and 128 out of 1204 CT features showed significant temporal dynamics in healthy prostate parenchyma, prostate tumors and lung tumors, respectively. CT radiomics-based classification accuracy of healthy and tumor ROIs was highly dependent on contrast agent phase. For dceMRI, 899 and 1027 out of 1118 features were significantly dependent on time after contrast agent injection for prostate and lung tumors.
Conclusions: CT and MRI radiomics features in both prostate and lung tumors are significantly affected by interindividual differences in contrast agent dynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11049400 | PMC |
http://dx.doi.org/10.3390/cancers16081519 | DOI Listing |
Vaccines (Basel)
December 2024
Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.
Background/objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Ribeirão Preto College of Nursing, Campus Ribeirão Preto, University of Sao Paulo, Ribeirão Preto 14040-902, SP, Brazil.
COVID-19 is an infectious disease whose prevention is significantly aided by vaccination, which reduces both case severity and mortality. Despite the safety and efficacy of vaccines, acceptance is not universal, and understanding of the factors influencing vaccination decisions and hesitancy remains limited. This review aims to identify and analyze studies addressing two key questions: what influences the decision to vaccinate and what factors are associated with vaccine hesitancy.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy.
Lumpy skin disease virus ( family- genus) is the aetiological agent of LSD, a disease primarily transmitted by hematophagous biting, affecting principally cattle. Currently, only live attenuated vaccines are commercially available, but their use is limited to endemic areas. There is a need for safer vaccines, especially in LSD-free countries.
View Article and Find Full Text PDFPharmaceutics
December 2024
University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
Background/objectives: Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.
Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!