Novel Organic-Inorganic Nanocomposite Hybrids Based on Bioactive Glass Nanoparticles and Their Enhanced Osteoinductive Properties.

Biomolecules

Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile.

Published: April 2024

Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties. The nanocomposite hybrids were produced by incorporating nBGs in situ into a polytetrahydrofuran (PTHF) and silica (SiO) hybrid synthesis mixture using a combined sol-gel and cationic polymerization method. nBGs ~80 nm in size were synthesized using the sol-gel technique. The structure, composition, morphology, and mechanical properties of the resulting materials were characterized using ATR-FTIR, Si MAS NMR, SEM-EDX, AFM, TGA, DSC, mechanical, and DMA testing. The in vitro bioactivity and degradability of the hybrids were assessed in simulated body fluid (SBF) and PBS, respectively. Cytocompatibility with mesenchymal stem cells was assessed using MTS and cell adhesion assays. Osteogenic differentiation was determined using the alkaline phosphatase activity (ALP), as well as the gene expression of Runx2 and Osterix markers. Hybrids loaded with 5, 10, and 15% of nBGs retained the mechanical flexibility of the PTHF-SiO matrix and improved its ability to promote the formation of bone-like apatite in SBF. The nBGs did not impair cell viability, increased the ALP activity, and upregulated the expression of Runx2 and Osterix. These results demonstrate that nBGs are an effective osteoinductive nanoadditive for the production of class II hybrid materials with enhanced properties for bone tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047882PMC
http://dx.doi.org/10.3390/biom14040482DOI Listing

Publication Analysis

Top Keywords

osteoinductive properties
12
nanocomposite hybrids
8
bioactive glass
8
glass nanoparticles
8
bone tissue
8
mechanical flexibility
8
class hybrid
8
expression runx2
8
runx2 osterix
8
nbgs
6

Similar Publications

Injectable MXene/Ag-HA composite hydrogel for enhanced alveolar bone healing and mechanistic study.

Front Bioeng Biotechnol

December 2024

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Introduction: Alveolar bone defects pose significant challenges in dentistry. Due to the complexity of alveolar bone anatomy and insufficient repair mechanisms, large bone defects are difficult for the body to heal naturally. Clinical treatment typically involves the use of bone substitute materials.

View Article and Find Full Text PDF

Background: Ceramic endosseous implant coatings have gained esteem due to their favorable osteoinductive and osteoconductive properties. However, such a layer may be prone to failure under in vivo conditions, which necessitates its modification.

Objectives: The aim of the present study was to modify an electrodeposited hydroxyapatite (HA) coating on titanium (Ti) with ultrashort-pulsed lasers for the incorporation of the ceramic into the sample surface and the texturing of the metal surface.

View Article and Find Full Text PDF

Tricalcium silicate (TCS)-based bioactive cements have attracted great attention for various endodontic applications owing to their hydraulic property, sealing ability and biological properties. Nevertheless, poor handling property and anti-washout ability are the main challenges for traditional TCS-based cements and their osteoinductive capacity needs enhance for accelerated pulpal and periapical tissue repair/regeneration. Herein, we developed an injectable TCS/α-tricalcium phosphate (α-TCP)/hydroxypropyl methylcellulose (HPMC) biocomposite with improved physicochemical properties and osteoinductive ability via the incorporation of α-TCP/HPMC.

View Article and Find Full Text PDF

3D-printed microporous titanium scaffolds enjoy good biointegration with the residuum's soft and bone tissues, and they promote excellent biomechanical properties in attached prostheses. Implant-associated infection, however, remains a major clinical challenge. Silver-based implant coatings can potentially reduce bacterial growth and inhibit biofilm formation, thereby reducing the risk of periprosthetic infections.

View Article and Find Full Text PDF

This study aims to evaluate the osteoconductive and osteoinductive potential of novel composite collagenous sponges enriched with keratin (K), hydroxyapatite (HA), and their combination (K+HA) for osteochondral regeneration in rat knee models. By examining cell proliferation, mineralization, and vascularization, we aim to determine the regenerative effectiveness of these materials in promoting osteochondral repair, particularly in load-bearing joints like the knee. Addressing the problem of osteochondral defects (OCD), which lead to osteoarthritis-a condition characterized by pain and functional impairment-the hereby research evaluates these biomaterials for their potential to foster bone and cartilage repair, especially in load-bearing joints as the knee.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!