Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Machine learning analyses within the realm of oral cancer outcomes are relatively underexplored compared to other cancer types. This study aimed to assess the performance of machine learning algorithms in identifying oral cancer patients, utilizing microRNA expression data. In this study, we implemented this approach using a panel of oral cancer-associated microRNAs sourced from standard incisional biopsy specimens to identify cases of oral squamous cell carcinomas (OSCC). For the model development process, we used a dataset comprising 30 OSCC and 30 histologically normal epithelium (HNE) cases. We initially trained a logistic regression prediction model using 70 percent of the dataset, while reserving the remaining 30 percent for testing. Subsequently, the model underwent hyperparameter tuning resulting in enhanced performance metrics. The hyperparameter-tuned model exhibited high accuracy (0.894) and ROC AUC (0.898) in predicting OSCC. Testing the model on cases of potentially malignant disorders (OPMDs) revealed that leukoplakia with mild dysplasia was predicted as having a high risk of progressing to OSCC, emphasizing machine learning's advantage over histopathology in detecting early molecular changes. These findings underscore the necessity for further refinement, incorporating a broader set of variables to enhance the model's predictive capabilities in assessing the risk of oral potentially malignant disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048287 | PMC |
http://dx.doi.org/10.3390/biom14040458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!