Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and Alzheimer's disease. Knowing where a target protein resides within a cell will give insights into tailored drug design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location identification. However, the booming era of proteomics and high-throughput sequencing generates tons of newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML), especially deep learning methods, have made significant progress in this research area. In this article, we review the latest advances in AI-based method development in three typical types of approaches, including sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges and future directions in AI-based method development in this research field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048326 | PMC |
http://dx.doi.org/10.3390/biom14040409 | DOI Listing |
Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Geriatric, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, China.
Accumulating evidence has demonstrated that Keratin18 (KRT18) functions as a pivotal gene in the progression of various cancers. However, its role in cholangiocarcinoma (CCA) remains unexplored. Our study elucidated the biological functions and underlying mechanisms of KRT18 in CCA.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.
β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!