Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back.

Biomolecules

Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

Published: March 2024

Silencing of the fragile X messenger ribonucleoprotein 1 () gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047961PMC
http://dx.doi.org/10.3390/biom14040399DOI Listing

Publication Analysis

Top Keywords

fragile messenger
8
messenger ribonucleoprotein
8
localization signal
8
protein
4
ribonucleoprotein protein
4
protein multifunctionality
4
multifunctionality cytosol
4
cytosol nucleolus
4
nucleolus silencing
4
silencing fragile
4

Similar Publications

(Fragile X messenger ribonucleoprotein 1), located on the X-chromosome, encodes the multi-functional FMR1 protein (FMRP), critical to brain development and function. Trinucleotide CGG repeat expansions at this locus cause a range of neurological disorders, collectively referred to as Fragile X-related conditions. The most well-known of these is Fragile X syndrome, a neurodevelopmental disorder associated with syndromic facial features, autism, intellectual disabilities, and seizures.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Disorders: Basics of Biology and Therapeutics in Development.

Cells

December 2024

Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.

Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 () promoted DNA methylation and, consequently, silenced expression of . Further analysis proved that shorter repeat expansions in also manifested in disease at later stages in life.

View Article and Find Full Text PDF

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF

Genetic study on candidates for oocyte donation.

JBRA Assist Reprod

December 2024

Genetics Unit, Department of Pathology, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.

Objective: There is a rising demand for assisted reproductive medicine, including sperm, oocyte and embryo donation. Besides medical and legal considerations, genetic testing, including carrier screening for multiple autosomal and X-linked recessive disorders plays an essential role in evaluating hereditary risk among donors and therefore exclude them from the donation process.

Methods: A retrospective study was conducted on oocyte donors from a private clinic of assisted reproduction who underwent genetic testing between June 2014 and September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!