Pig point cloud data can be used to digitally reconstruct surface features, calculate pig body volume and estimate pig body weight. Volume, as a pig novel phenotype feature, has the following functions: (a) It can be used to estimate livestock weight based on its high correlation with body weight. (b) The volume proportion of various body parts (such as head, legs, etc.) can be obtained through point cloud segmentation, and the new phenotype information can be utilized for breeding pigs with smaller head volumes and stouter legs. However, as the pig point cloud has an irregular shape and may be partially missing, it is difficult to form a closed loop surface for volume calculation. Considering the better water tightness of Poisson reconstruction, this article adopts an improved Poisson reconstruction algorithm to reconstruct pig body point clouds, making the reconstruction results smoother, more continuous, and more complete. In the present study, standard shape point clouds, a known-volume Stanford rabbit standard model, a measured volume piglet model, and 479 sets of pig point cloud data with known body weight were adopted to confirm the accuracy and reliability of the improved Poisson reconstruction and volume calculation algorithm. Among them, the relative error was 4% in the piglet model volume result. The average absolute error was 2.664 kg in the weight estimation obtained from pig volume by collecting pig point clouds, and the average relative error was 2.478%. Concurrently, it was determined that the correlation coefficient between pig body volume and pig body weight was 0.95.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047725 | PMC |
http://dx.doi.org/10.3390/ani14081210 | DOI Listing |
AAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science, Université Laval, Québec G1V 0A6, Canada; Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec G1V 0A6, Canada; Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec G1V 0A6, Canada. Electronic address:
Industrial wastewaters are significant global concerns due to their environmental impact. Yet, protein-rich wastewaters can be valorized by enzymatic hydrolysis to release bioactive peptides. However, achieving selective molecular differentiation and eventually enhancing peptide bioactivities require costly cascades of membranes.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands.
Heliyon
December 2024
Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
Rationale And Objective: The visualization of soft tissues, like the meniscus, through X-ray micro-computed tomography (micro-CT), requires the use of contrast agents (CAs). While other studies have investigated CA diffusion in fibrocartilagineous tissues, this work aimed to optimize iodine staining protocols for meniscal tissue that improve their visualization by micro-CT. Specific objectives included evaluating the diffusion of CAs within meniscal samples over time, assessing volume changes due to staining, and identifying the iodine ions absorbed by the tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!