Pigeons have natural advantages in robotics research, including a wide range of activities, low energy consumption, good concealment performance, strong long-distance weight bearing and continuous flight ability, excellent navigation, and spatial cognitive ability, etc. They are typical model animals in the field of animal robot research and have important application value. A hot interdisciplinary research topic and the core content of pigeon robot research, altering pigeon motor behavior using brain stimulation involves multiple disciplines including animal ethology, neuroscience, electronic information technology and artificial intelligence technology, etc. In this paper, we review the progress of altering pigeon motor behavior using brain stimulation from the perspectives of the neural basis and neuro-devices. The recent literature on altering pigeon motor behavior using brain stimulation was investigated first. The neural basis, structure and function of a system to alter pigeon motor behavior using brain stimulation are briefly introduced below. Furthermore, a classified review was carried out based on the representative research achievements in this field in recent years. Our summary and discussion of the related research progress cover five aspects including the control targets, control parameters, control environment, control objectives, and control system. Future directions that need to be further studied are discussed, and the development trend in altering pigeon motor behavior using brain stimulation is projected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047962PMC
http://dx.doi.org/10.3390/brainsci14040339DOI Listing

Publication Analysis

Top Keywords

motor behavior
24
pigeon motor
20
behavior brain
20
brain stimulation
20
altering pigeon
16
neural basis
12
perspectives neural
8
basis neuro-devices
8
motor
6
behavior
6

Similar Publications

Neuronal cell type specific roles for Nprl2 in neurodevelopmental disorder-relevant behaviors.

Neurobiol Dis

January 2025

The University of Texas Southwestern Medical Center, Department of Neurology, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Psychiatry, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Pediatrics, Dallas, TX, United States of America; The University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX, United States of America. Electronic address:

Loss of function in the subunits of the GTPase-activating protein (GAP) activity toward Rags-1 (GATOR1) complex, an amino-acid sensitive negative regulator of the mechanistic target of rapamycin complex 1 (mTORC1), is implicated in both genetic familial epilepsies and NDDs (Baldassari et al., 2018). Previous studies have found seizure phenotypes and increased activity resulting from conditional deletion of GATOR1 function from forebrain excitatory neurons (Yuskaitis et al.

View Article and Find Full Text PDF

Human evolution: Run Lucy, run!

Curr Biol

January 2025

Department of Anthropology, University College London, London, UK; McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK. Electronic address:

Endurance running is thought as critical for the evolutionary success of hominins. A new study analysing the running skills of the famous 'Lucy' - Australopithecus afarensis - finds that they performed poorer than modern humans, suggesting that key features of the human body plan evolved specifically to improve running performance.

View Article and Find Full Text PDF

Secondary motor cortex tracks decision value during the learning of a non-instructed task.

Cell Rep

January 2025

Institut Interdisciplinaire de Neurosciences (IINS), University Bordeaux, CNRS, IINS, UMR 5297, 33000 Bordeaux, France; Centre Broca Nouvelle-Aquitaine, 146, rue Léo-Saignat, 33076 Bordeaux, France. Electronic address:

Optimal decision-making depends on interconnected frontal brain regions, enabling animals to adapt decisions based on internal states, experiences, and contexts. The secondary motor cortex (M2) is key in adaptive behaviors in expert rodents, particularly in encoding decision values guiding complex probabilistic tasks. However, its role in deterministic tasks during initial learning remains uncertain.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.

Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.

View Article and Find Full Text PDF

We aimed to determine the persisting effects of various exercise modalities and intensities on functional capacity after periods of training cessation in older adults. A comprehensive search was conducted across the Cochrane Library, PubMed/MEDLINE, Scopus, and Web of Science Core Collection up to March 2024 for randomized controlled trials examining residual effects of physical exercise on functional capacity in older adults ≥ 60 years. The analysis encompassed 15 studies and 21 intervention arms, involving 787 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!