ECG helps in diagnosing heart disease by recording heart activity. During long-term measurements, data loss occurs due to sensor detachment. Therefore, research into the reconstruction of missing ECG data is essential. However, ECG requires user participation and cannot be used for continuous heart monitoring. Continuous monitoring of PPG signals is conversely low-cost and easy to carry out. In this study, a deep neural network model is proposed for the reconstruction of missing ECG signals using PPG data. This model is an end-to-end deep learning neural network utilizing WNet architecture as a basis, on which a bidirectional long short-term memory network is added in establishing a second model. The performance of both models is verified using 146 records from the MIMIC III matched subset. Compared with the reference, the ECG reconstructed using the proposed model has a Pearson's correlation coefficient of 0.851, root mean square error (RMSE) of 0.075, percentage root mean square difference (PRD) of 5.452, and a Fréchet distance (FD) of 0.302. The experimental results demonstrate that it is feasible to reconstruct missing ECG signals from PPG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048151PMC
http://dx.doi.org/10.3390/bioengineering11040365DOI Listing

Publication Analysis

Top Keywords

reconstruction missing
12
neural network
12
missing ecg
12
deep neural
8
ecg signals
8
signals ppg
8
root square
8
ecg
6
missing electrocardiography
4
signals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!