Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malaria is one of the life-threatening diseases caused by the parasite known as Plasmodium falciparum, affecting the human red blood cells. Therefore, it is an important to have an effective computer-aided system in place for early detection and treatment. The visual heterogeneity of the malaria dataset is highly complex and dynamic, therefore higher number of images are needed to train the machine learning (ML) models effectively. However, hospitals as well as medical institutions do not share the medical image data for collaboration due to general data protection regulations (GDPR) and the data protection act (DPA). To overcome this collaborative challenge, our research utilised real-time medical image data in the framework of federated learning (FL). We have used state-of-the-art ML models that include the ResNet-50 and DenseNet in a federated learning framework. We have experimented both models in different settings on a malaria dataset constituting 27,560 publicly available images and our preliminary results showed that the DenseNet model performed better in accuracy (75%) in contrast to ResNet-50 (72%) while considering eight clients, while the trend was observed as common in four clients with the similar accuracy of 94%, and six clients showed that the DenseNet model performed quite well with the accuracy of 92%, while ResNet-50 achieved only 72%. The federated learning framework enhances the accuracy due to its decentralised nature, continuous learning, and effective communication among clients, as well as the efficient local adaptation. The use of federated learning architecture among the distinct clients for ensuring the data privacy and following GDPR is the contribution of this research work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048296 | PMC |
http://dx.doi.org/10.3390/bioengineering11040340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!