AI Article Synopsis

  • The corticobasal syndrome (CBS) is a complex movement disorder that can lead to cognitive impairment, often linked to either corticobasal degeneration or Alzheimer's disease, but with differing underlying causes.
  • Researchers studied synaptic loss in 25 patients with CBS compared to 32 healthy controls, using advanced imaging techniques to assess synaptic density and brain volume.
  • Results showed that CBS patients had increased tau levels and gray matter loss, with more pronounced synaptic loss in those without β-amyloid, suggesting different treatment approaches may be needed based on the presence of Alzheimer's pathology.

Article Abstract

Background/objective: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to β-amyloid status.

Methods: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [C]UCB-J non-displaceable binding potential (BP), AD-tau pathology by [F]AV-1451 BP, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had β-amyloid imaging with C-labeled Pittsburgh Compound-B ([C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BP and gray matter volume between groups were assessed by ANOVA.

Results: Compared to controls, patients with CBS had higher [F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the β-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side.

Discussion: Distinct patterns of [C]UCB-J and [F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.29814DOI Listing

Publication Analysis

Top Keywords

synaptic loss
24
gray matter
16
matter volume
16
loss
8
β-amyloid negative
8
corticobasal syndrome
8
movement disorder
8
alzheimer's disease
8
patients cbs
8
synaptic density
8

Similar Publications

Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis.

Neurotox Res

January 2025

Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.

Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand.

View Article and Find Full Text PDF

G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis.

Cell Rep

January 2025

Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada. Electronic address:

Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP).

View Article and Find Full Text PDF

The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.

View Article and Find Full Text PDF

Deep Brain Stimulation Combined with NMDA Antagonist Therapy in the Treatment of Alzheimer's Disease: In Silico Trials.

J Clin Med

December 2024

Division of Biostatistics and Neural Networks, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland.

: Deep brain stimulation (DBS) is employed to adjust the activity of impaired brain circuits. The variability in clinical trial outcomes for treating Alzheimer's disease with memantine is not yet fully understood. We conducted a randomized in silico study comparing virtual DBS therapies with treatment involving an NMDA antagonist combined with DBS in patients with Alzheimer's disease.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!