Cobalt metal replaces Co-ZIF-8 mesoporous material for effective adsorption of arsenic from wastewater.

Environ Sci Pollut Res Int

State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Published: May 2024

The high cost and low adsorption capacity of primary metal-organic frameworks (ZIF-8) limit their application in heavy metal removal. In this paper, Co/Zn bimetallic MOF materials were synthesized with excellent adsorption performance for As. The adsorption reached equilibrium after 180 min and the maximum adsorption was 250.088 mg/g. In addition, Co-ZIF-8 showed strong selective adsorption of As. The adsorption process model of Co-ZIF-8 fits well with the pseudo-second-order kinetic model (R=0.997) and Langmuir isotherm model (R=0.994), and it is demonstrated that the adsorption behavior of the adsorbent is a single layer of chemical adsorption. In addition, when the adsorbent enters the arsenic-containing solution, the surface of Co-ZIF-8 is hydrolyzed to produce a large number of Co-OH active sites, and As arrives at the surface of Co-ZIF-8 by electrostatic adsorption and combines with the active sites to generate the arsenic-containing complex As-O-Co. After four cycles, Co-ZIF-8 showed 80% adsorption of As. This study not only provides a new method to capture As in water by preparing MOF with partial replacement of the central metal, but also has great significance for the harmless disposal of polluted water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33419-2DOI Listing

Publication Analysis

Top Keywords

adsorption
11
surface co-zif-8
8
active sites
8
co-zif-8
6
cobalt metal
4
metal replaces
4
replaces co-zif-8
4
co-zif-8 mesoporous
4
mesoporous material
4
material effective
4

Similar Publications

In this study, we utilized drinking water treatment sludge (WTS) to produce adsorbents through the drying and calcination process. These adsorbents were then evaluated for their ability to remove azithromycin (AZT) from aqueous solutions. The L-500 adsorbent, derived from the calcination (at 500°C) of WTS generated under conditions of low turbidity in the drinking water treatment plant, presented an increase in the specific surface area from 70.

View Article and Find Full Text PDF

The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β‑ketoenamine-linked BDP‑TFP‑COF, which crystallizes in AA‑stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET = 1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets.

View Article and Find Full Text PDF

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.

View Article and Find Full Text PDF

Water contamination by polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, is a serious environmental concern due to its persistence, bioaccumulation, and toxicity. This study explores the adsorption behavior of naphthalene using organobentonite (OBt), synthesized by intercalating cetyltrimethylammonium bromide (CTAB) into sodium bentonite (SBt) with varying cation exchange capacities (CECs). The effectiveness of OBt in naphthalene adsorption was evaluated by analyzing key parameters, including CEC, contaminant concentration, and contact time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!