DNA tetrahedron-based dual-signal fluorescence detection of apoE4 gene sites on a microplate reader.

Mikrochim Acta

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.

Published: April 2024

AI Article Synopsis

Article Abstract

As a neurodegenerative disorder, Alzheimer's disease (AD) is characterized by cognitive dysfunction and behavioral impairment. Among the various genetic risk factors for AD, apoE4 gene plays a pivotal role in the onset and progression of AD, and detection of apoE4 gene holds significance for prevention and early diagnosis of AD. Herein, dual-signal fluorescence detection of fragments associated with apoE ε4 allele near codon 112 (Tc1) and codon 158 (Tc2) was achieved using DNA tetrahedron nanostructure (DTN). The Förster resonance energy transfer (FRET) process in the DTN was initiated in which the nucleic acid intercalating dye thiazole orange (TO) served as the donor and the cyanine dyes of cyanine3 (Cy3) and cyanine5 (Cy5) at the two vertices of DTN served as the acceptors. In the presence of Tc1 and Tc2, the FRET process between TO and the cyanine dyes was hindered by the enzymatic cleavage reaction, which ensures the dual-signal fluorescence assay of apoE4 gene sites. The limit of detection for Tc1 and Tc2 was estimated to be 0.82 nM and 0.77 nM, respectively, and the whole assay was accomplished within 1 h on a microplate reader. The proposed method thus possesses the advantages of easy operation, short detection time, and high-throughput capability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-024-06365-6DOI Listing

Publication Analysis

Top Keywords

apoe4 gene
16
dual-signal fluorescence
12
fluorescence detection
8
detection apoe4
8
gene sites
8
microplate reader
8
fret process
8
cyanine dyes
8
tc1 tc2
8
detection
5

Similar Publications

APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology.

Mol Neurodegener

January 2025

Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.

Background: Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects.

View Article and Find Full Text PDF

Apolipoprotein E (ApoE), especially the ApoE4 isotype, is suggested to influence the severity of respiratory viral infections; however, this association is still unclear. The presence of allele ε4 impacts the development of flu-like syndromes. This study aimed to evaluate the impact of the Apo E4 isoform on the severity and duration of flu-like syndromes, including the coronavirus disease COVID-19.

View Article and Find Full Text PDF

Introduction: Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice.

View Article and Find Full Text PDF

Apolipoprotein E (APOE) has multiple functions in metabolism and immunoregulation. Its common germline variants APOE2, APOE3 and APOE4 give rise to three functionally distinct gene products. Previous studies reported yin-yang roles of APOE2 and APOE4 in immunological processes, but their effects in hematopoietic stem cell transplantation (HSCT) have never been studied.

View Article and Find Full Text PDF

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!