Regionally-triggered geomagnetic reversals.

Sci Rep

Nantes Université, Univ Angers, Le Mans Université, CNRS, Laboratoire de Planétologie et Géosciences, LPG UMR 6112, 44000, Nantes, France.

Published: April 2024

AI Article Synopsis

  • The transition to magnetic field reversals in dynamo simulations is linked to increased inertial effects, despite their secondary role in Earth's outer core.
  • Reversals occur primarily in areas with high heat flux, where small-scale inertial forces are significant, influenced by heterogeneities in the outer boundary heat flux.
  • Increasing heat flux heterogeneity can lead to sub-adiabatic conditions that suppress these small-scale magnetic fields, thereby reducing the potential for reversals and demonstrating complex behavior in the geodynamo system.

Article Abstract

Systematic studies of numerical dynamo simulations reveal that the transition from dipole-dominated non-reversing fields to models that exhibit reversals occurs when inertial effects become strong enough. However, the inertial force is expected to play a secondary role in the force balance in Earth's outer core. Here we show that reversals in numerical dynamo models with heterogeneous outer boundary heat flux inferred from lower mantle seismic anomalies appear when the amplitude of heat flux heterogeneity is increased. The reversals are triggered at regions of large heat flux in which strong small-scale inertial forces are produced, while elsewhere inertial forces are substantially smaller. When the amplitude of heat flux heterogeneity is further increased so that in some regions sub-adiabatic conditions are reached, regional skin effects suppress small-scale magnetic fields and the tendency to reverse decreases. Our results reconcile the need for inertia for reversals with the theoretical expectation that the inertial force remains secondary in the force balance. Moreover, our results highlight a non-trivial non-monotonic behavior of the geodynamo in response to changes in the amplitude of the core-mantle boundary heat flux heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577040PMC
http://dx.doi.org/10.1038/s41598-024-59849-zDOI Listing

Publication Analysis

Top Keywords

heat flux
20
flux heterogeneity
12
numerical dynamo
8
inertial force
8
force balance
8
boundary heat
8
amplitude heat
8
heterogeneity increased
8
inertial forces
8
reversals
5

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by upper and lower motor neuron death that leads to paralysis with the average survival being 3-5 years after diagnosis. The major pathological protein in ALS is TDP-43. TDP-43 becomes hyperphosphorylated and forms inclusions mainly in the cytoplasm.

View Article and Find Full Text PDF

Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.

View Article and Find Full Text PDF

The characteristics of temperature-responsive ionic liquids on the integrated operational effectiveness of water reclamation from semiconductor wastewater using forward osmosis.

Chemosphere

December 2024

Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan, ROC; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33323, Taiwan, ROC; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan, ROC. Electronic address:

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

Persistent but weak magnetic field at the Moon's midstage revealed by Chang'e-5 basalt.

Sci Adv

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.

View Article and Find Full Text PDF

Currently, coke with significant differences in CRI/CSR (coke reactivity index and coke strength after reaction) can already be effectively utilized in blast furnaces (BFs). However, there remains a considerable controversy on the replaceability of high and low CRI/CSR coke. Therefore, an analysis was conducted on the metallurgical performance of C1, C2, and C3(CRI:C3 > C2 > C1&CSR:C3 < C2 < C1) through simulated BF under the ore-coke coexistence (OCC) experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!