Predictive maintenance harnesses statistical analysis to preemptively identify equipment and system faults, facilitating cost- effective preventive measures. Machine learning algorithms enable comprehensive analysis of historical data, revealing emerging patterns and accurate predictions of impending system failures. Common hurdles in applying ML algorithms to PdM include data scarcity, data imbalance due to few failure instances, and the temporal dependence nature of PdM data. This study proposes an ML-based approach that adapts to these hurdles through the generation of synthetic data, temporal feature extraction, and the creation of failure horizons. The approach employs Generative Adversarial Networks to generate synthetic data and LSTM layers to extract temporal features. ML algorithms trained on the generated data achieved high accuracies: ANN (88.98%), Random Forest (74.15%), Decision Tree (73.82%), KNN (74.02%), and XGBoost (73.93%).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053123 | PMC |
http://dx.doi.org/10.1038/s41598-024-59958-9 | DOI Listing |
Sci Rep
December 2024
School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China.
Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020.
View Article and Find Full Text PDFSci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.
The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Liaoning Engineering Vocational College, Tieling, 112008, Liaoning, People's Republic of China.
The paper proposes a multi-rigid-body system state identification method based on self-healing model in order to improve the accuracy and reliability of CNC machine tools. Firstly, considering the influence of the joint surface, the Lagrange method is used to establish the mechanical model of the multi-rigid-body system. We input acceleration information and use the second-order modulation function to complete the online real-time identification of the joint surface parameters, thereby establishing the self-healing mechanical model of the multi-rigid-body system.
View Article and Find Full Text PDFSci Rep
December 2024
Clermont Auvergne University, CNRS, IRD, OPGC, Magmas and Volcanoes Laboratory, 63000, Clermont-Ferrand, France.
The new submarine volcano Fani Maoré offshore Mayotte (Comoros archipelago) discovered in 2019 has raised the awareness of a possible future eruption in Petite-Terre island, located on the same 60 km-long volcanic chain. In this context of a renewal of the volcanic activity, we present here the first volcanic hazard assessment in Mayotte, focusing on the potential reactivation of the Petite-Terre eruptive centers. Using the 2-D tephra dispersal model HAZMAP and the 1979 - 2021 meteorological ERA-5 database, we first identify single eruptive scenarios of various impacts for the population of Mayotte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!