Dirac and Weyl semimetals are a central topic of contemporary condensed matter physics, and the discovery of new compounds with Dirac/Weyl electronic states is crucial to the advancement of topological materials and quantum technologies. Here we show a widely applicable strategy that uses high configuration entropy to engineer relativistic electronic states. We take the AMnSb (A = Ba, Sr, Ca, Eu, and Yb) Dirac material family as an example and demonstrate that mixing of Ba, Sr, Ca, Eu and Yb at the A site generates the compound (BaSrCaEuYb)MnSb (denoted as AMnSb), giving access to a polar structure with a space group that is not present in any of the parent compounds. AMnSb is an entropy-stabilized phase that preserves its linear band dispersion despite considerable lattice disorder. Although both AMnSb and AMnSb have quasi-two-dimensional crystal structures, the two-dimensional Dirac states in the pristine AMnSb evolve into a highly anisotropic quasi-three-dimensional Dirac state triggered by local structure distortions in the high-entropy phase, which is revealed by Shubnikov-de Haas oscillations measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053097PMC
http://dx.doi.org/10.1038/s41467-024-47781-9DOI Listing

Publication Analysis

Top Keywords

dirac material
8
electronic states
8
amnsb
6
dirac
5
high-entropy engineering
4
engineering crystal
4
crystal electronic
4
electronic structures
4
structures dirac
4
material dirac
4

Similar Publications

Solid electrolytes (SEs) are crucial for advancing next-generation rechargeable battery technologies, but their commercial viability is partially limited by expensive precursors, unscalable synthesis, or low ionic conductivity. Lithium tetrahaloaluminates offer an economical option but exhibit low Li conductivities with high activation energy barriers. This study reports the synthesis of lithium aluminum chalcohalide (LiAlClS) using inexpensive precursors one-step mechanochemical milling.

View Article and Find Full Text PDF

Transfer matrix in graphene-like materials: the case of silicene and transition metal dichalcogenides.

J Phys Condens Matter

January 2025

Unidad Académica de Ciencia y Tecnología de la Luz y la Materia, Universidad Autónoma de Zacatecas, Circuito Marie Curie S/N, Parque de Ciencia y Tecnología QUANTUM Ciudad del Conocimiento, 98160 Zacatecas, Zacatecas, Mexico.

The fundamental properties of 1D Dirac-like problems in silicene and transition metal dichalcogenides (TMDs) are derived with the use of the transfer matrix. Analytic expressions for the transmission coefficient and the bound states are obtained for these 2D materials. The continuity between states of perfect transmission and bound states is also addressed in silicene and TMDs.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF
Article Synopsis
  • Discovering the optoelectronic properties of transition metal dichalcogenides (TMDCs) is crucial for next-gen electronic devices, with a focus on the impact of external strains on Dirac states, an area still being explored.
  • A comprehensive database of 90 TMDC types was created, revealing that 27.3% exhibit Dirac materials with three distinct types of Dirac cones, influenced by external strain-induced electron localization.
  • The study shows that TMDCs from tellurides with 1H phase enhance the formation of Dirac cones under stress, leading to metallic properties and increased charge transport, ultimately offering insights for the development of TMDCs in superconducting and optoelectronic applications.
View Article and Find Full Text PDF

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

Article Synopsis
  • A sumanene monolayer with a unique Kagome-like lattice features two flat bands and two Dirac cones, which can be designed using carbon clusters.
  • First-principles simulations show that surface charge doping can effectively adjust the Fermi level between these bands, allowing for the transformation of the semiconducting monolayer into a semimetal using Li/Na/K atoms.
  • This doped sumanene exhibits high theoretical storage capacity, rapid charge capability, and exceptional structural stability, making it an attractive anode material for alkali-metal batteries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!