Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we developed a tissue-adhesive and long-term antibacterial hydrogel consisting of protamine (PRTM) grafted carboxymethyl chitosan (CMC) (PCMC), catechol groups modified CMC (DCMC), and oxidized hyaluronic acid (OHA), named DCMC-OHA-PCMC. According to the antibacterial experiments, the PCMC-treated groups showed obvious and long-lasting inhibition zones against E. coli (and S. aureus), and the corresponding diameters varied from 10.1 mm (and 15.3 mm) on day 1 to 9.8 mm (and 15.3 mm) on day 7. The DCMC-OHA-PCMC hydrogel treated groups also exhibited durable antibacterial ability against E. coli (and S. aureus), and the antibacterial rates changed from 99.3 ± 0.21 % (and 99.6 ± 0.36 %) on day 1 to 76.2 ± 1.74 % (and 84.2 ± 1.11 %) on day 5. Apart from good mechanical and tissue adhesion properties, the hydrogel had excellent hemostatic ability mainly because of the grafted positive-charged PRTM. As the animal assay results showed, the hydrogel was conducive to promoting the deposition of new collagen (0.84 ± 0.03), the regeneration of epidermis (98.91 ± 6.99 μm) and wound closure in the process of wound repairing. In conclusion, the presented outcomes underline the prospective potential of the multifunctional CMC-based hydrogel for applications in wound dressings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!