A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secondary proton buildup in space radiation shielding. | LitMetric

Secondary proton buildup in space radiation shielding.

Life Sci Space Res (Amst)

Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA.

Published: May 2024

The risk posed by prolonged exposure to space radiation represents a significant obstacle to long-duration human space exploration. Of the ion species present in the galactic cosmic ray spectrum, relativistic protons are the most abundant and as such are a relevant point of interest with regard to the radiation protection of space crews involved in future long-term missions to the Moon, Mars, and beyond. This work compared the shielding effectiveness of a number of standard and composite materials relevant to the design and development of future spacecraft or planetary surface habitats. Absorbed dose was measured using AlO:C optically stimulated luminescence dosimeters behind shielding targets of varying composition and depth using the 1 GeV nominal energy proton beam available at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York. Absorbed dose scored from computer simulations performed using the multi-purpose Monte Carlo radiation transport code FLUKA agrees well with measurements obtained via the shielding experiments. All shielding materials tested and modeled in this study were unable to reduce absorbed dose below that measured by the (unshielded) front detector, even after depths as large as 30 g/cm. These results could be noteworthy given the broad range of proton energies present in the galactic cosmic ray spectrum, and the potential health and safety hazard such space radiation could represent to future human space exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2024.02.005DOI Listing

Publication Analysis

Top Keywords

space radiation
16
absorbed dose
12
human space
8
space exploration
8
galactic cosmic
8
cosmic ray
8
ray spectrum
8
dose measured
8
space
7
radiation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!