Background/aim: The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm.

Case Report: Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process.

Conclusion: We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059595PMC
http://dx.doi.org/10.21873/cgp.20444DOI Listing

Publication Analysis

Top Keywords

chondroid mesenchymal
16
calcified chondroid
12
growth factor
8
factor receptor
8
receptor alpha
8
mesenchymal neoplasm
8
partner gene
8
pdgfrausp8 usp8pdgfra
8
protein predicted
8
cell membrane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!