Background/aim: Patients with triple-negative breast cancer (TNBC) have a high rate of recurrence within 3 years of diagnosis and a high rate of death within 5 years compared to other subtypes. The number of clinical trials investigating various new agents and combination therapies has recently increased; however, current strategies benefit only a minority of patients. This study aimed to identify specific genes that predict patients at high risk of recurrence and the immune status of the tumor microenvironment at an early stage, thereby providing insight into potential therapeutic targets to improve clinical outcomes in TNBC patients.
Materials And Methods: We evaluated the prognostic significance of microarray mRNA expression of 20,603 genes in 233 TNBC patients from the METABRIC dataset and further validated the results using RNA-seq mRNA expression data in 143 TNBC patients from the GSE96058 dataset.
Results: Eighteen differentially expressed genes (AKNA, ARHGAP30, CA9, CD3D, CD3G, CD6, CXCR6, CYSLTR1, DOCK10, ENO1, FLT3LG, IFNG, IL2RB, LPXN, PRKCB, PVRIG, RASSF5, and STAT4) identified in both datasets were found to be reliable biomarkers for predicting TNBC recurrence and progression. Notably, the genes whose low expression was associated with increased risk of recurrence and death were immune-related genes, with significant differences in levels of immune cell infiltration in the tumor microenvironment between high- and low- expression groups.
Conclusion: Genes reported herein may be effective biomarkers to identify TNBC patients who will and will not benefit from immunotherapy and may be particularly important genes for developing future treatment strategies, including immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059597 | PMC |
http://dx.doi.org/10.21873/cgp.20450 | DOI Listing |
Am J Cancer Res
December 2024
Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.
The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Cell Death Differ
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, Texas Southern University, Houston, TX 77004, USA.
Previous data show that the knockdown of the gene in the MDA-MB-231 cell line leads to the downregulation of gene expression. In addition, and genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!