Prospective prediction of anxiety onset in the Canadian longitudinal study on aging (CLSA): A machine learning study.

J Affect Disord

Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada. Electronic address:

Published: July 2024

Background: Anxiety disorders are among the most common mental health disorders in the middle aged and older population. Because older individuals are more likely to have multiple comorbidities or increased frailty, the impact of anxiety disorders on their overall well-being is exacerbated. Early identification of anxiety disorders using machine learning (ML) can potentially mitigate the adverse consequences associated with these disorders.

Methods: We applied ML to the data from the Canadian Longitudinal Study on Aging (CLSA) to predict the onset of anxiety disorders approximately three years in the future. We used Shapley value-based methods to determine the top factor for prediction. We also investigated whether anxiety onset can be predicted by baseline depression-related predictors alone.

Results: Our model was able to predict anxiety onset accurately (Area under the Receiver Operating Characteristic Curve or AUC = 0.814 ± 0.016 (mean ± standard deviation), balanced accuracy = 0.741 ± 0.016, sensitivity = 0.743 ± 0.033, and specificity = 0.738 ± 0.010). The top predictive factors included prior depression or mood disorder diagnosis, high frailty, anxious personality, and low emotional stability. Depression and mood disorders are well known comorbidity of anxiety; however a prior depression or mood disorder diagnosis could not predict anxiety onset without other factors.

Limitation: While our findings underscore the importance of a prior depression diagnosis in predicting anxiety, they also highlight that it alone is inadequate, signifying the necessity to incorporate additional predictors for improved prediction accuracy.

Conclusion: Our study showcases promising prospects for using machine learning to develop personalized prediction models for anxiety onset in middle-aged and older adults using easy-to-access survey data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2024.04.098DOI Listing

Publication Analysis

Top Keywords

anxiety onset
20
anxiety disorders
16
machine learning
12
prior depression
12
depression mood
12
anxiety
11
canadian longitudinal
8
longitudinal study
8
study aging
8
aging clsa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!