Water hypoxia and metal pollution are commonly co-existed in urbanized estuaries. This study focuses on the effect of an extended dissolved oxygen (DO) full-life dynamics (86 days) on metal behavior across the sediment-water interface through laboratory microcosms from two typical zones in Pearl River Estuary. Combining our time-series results of concentrations and fluxes, it showed that Co, Ni, and Zn consistently presented a release-precipitation-release trajectory with an oxic-hypoxic-anoxic-reoxic transition, characterized with highly variable behavior in the hypoxic-anoxic hotmoments. In parallel, changing DO dynamics significantly activated a repartitioning process of Co, Ni, and Zn among several species and elevated their risk in sediments, promoting the formation of more labile species in the 0-10 mm hotspots, where metals sensitively responded. Over DO transition, metal cycling was tightly co-related with Fe, Mn, and S elements. It was found that Mn was dominated in low oxygen-hypoxic period, but switched to S and Fe in anoxic stage, limiting sustained metal liberation to overlying water. Enlarging this experiment to practice, released Zn fluxes from sediments in hypoxic summer could contribute about ∼2.0% to their stocks in water column, while increase to 20% (1 m bottom water) in highly-stratified zones. This study has certain significance in understanding the long-term metal behavior and fate in estuarine regions, even lakes and reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172769DOI Listing

Publication Analysis

Top Keywords

metal cycling
8
oxic-hypoxic-anoxic-reoxic transition
8
metal behavior
8
metal
6
microcosm evaluation
4
evaluation metal
4
cycling urbanized
4
urbanized contaminated
4
contaminated estuary
4
estuary varying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!