Analysing spatial variability in drought sensitivity of rivers using explainable artificial intelligence.

Sci Total Environ

Hydraulics and Geotechnics Section, KU Leuven, Kasteelpark Arenberg 40, BE-3001 Leuven, Belgium. Electronic address:

Published: June 2024

AI Article Synopsis

  • Hydrological drought adversely affects aquatic ecosystems and human living standards, making it crucial for water managers to understand river drought sensitivity.
  • Statistical and machine learning methods were used to analyze drought metrics in Flanders, with XGBoost proving most effective, achieving 80-90% explained variance.
  • Key findings revealed that higher irrigation and human interferences increase drought sensitivity, and soil type plays a significant role in water transfer, while the effects of forest and agriculture on drought sensitivity remain complex and less clear.

Article Abstract

Hydrological drought can have a severe negative impact on aquatic ecosystems and human living standards. Therefore, being able to predict and gain more insights in the spatial variability in drought sensitivity of rivers is of relevance for water managers. The drought sensitivity of a river is in this study represented by four drought metrics, of which three are relative towards the ecological minimal flow. Statistical and machine learning methods were evaluated to predict these metrics for rivers in the Flanders region of Belgium based on catchment characteristics and data on human interferences. XGBoost had the best performance, with an explained variance of 80 % to 90 %. After applying explaining AI on these models, insights were obtained in the spatial variability of the drought metrics. Irrigation is the most important variable, a high percentage of irrigation leads to a higher drought sensitivity. If there are a lot of human interferences, there is a higher drought sensitivity. Many of the observed dependencies can be explained by the differences in soil infiltration capacity and transferability of water for sandy versus clay soils. No clear dependence with the amount of forest or agriculture was observed, implying that the impact of forest and agriculture on the drought sensitivity of a river is complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172685DOI Listing

Publication Analysis

Top Keywords

drought sensitivity
24
spatial variability
12
variability drought
12
drought
9
sensitivity rivers
8
insights spatial
8
sensitivity river
8
drought metrics
8
human interferences
8
higher drought
8

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Introduction: Accurate diagnosis of the water status of fruit trees is a prerequisite for precise irrigation. Measurement of leaf turgor pressure provides a means to explore the water utilization mechanisms of fruit trees and their responses to water stress. However, there are few studies on the use of daily minimum leaf turgor pressure (Ppmax) to indicate water information in apple tree.

View Article and Find Full Text PDF

Canola (Brassica napus sp.), the most important oily seed product in the world, is affected largely by salinity and drought stresses due to its ability to be planted in arid and semiarid regions. Therefore, studying potent genes involved in salt/drought stress response in canola would help improve abiotic stress tolerance.

View Article and Find Full Text PDF

Isoprene serves an important part in plant defense against biotic and abiotic stresses, while also exerting a crucial influence on atmospheric photochemical processes and global climate change. The regional climate-chemistry-ecosystem model (RegCM-Chem-YIBs) was employed in the following study to estimate the biogenic isoprene emissions (BISP) in China during 2018-2020. The model explored the relative contributions of various stress factors such as drought, carbon dioxide (CO), and surface ozone (O) to isoprene emissions.

View Article and Find Full Text PDF

Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!