Hydrodynamic cultivation of aeration-free oxygenic photogranules is favored by sufficient amounts of organic carbon.

Bioresour Technol

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Published: June 2024

Oxygenic photogranules (OPGs) have great potential for the aeration-free treatment of various wastewater, however, the effects of wastewater carbon composition on OPGs remain unknown. This study investigated the hydrodynamic photogranulation in three types of wastewater with the same total carbon concentration but different inorganic/organic carbon compositions, each operated at two replicated reactors. Results showed that photogranulation failed in reactors fed with only inorganic carbon. In reactors with equal inorganic and organic carbon, loose-structured OPGs formed but then disintegrated. Comparatively, reactors treating organic carbon-based wastewater obtained regular and dense OPGs with better settleability, lower effluent turbidity, excellent structural stability, and higher carbon assimilation rate. Sufficient amounts of organic carbon were crucial for the formation and stability of OPGs as they promoted the secretion of extracellular polymeric substances (EPS) and the growth of filamentous cyanobacteria. This study provides a basis for the startup of OPGs process and facilitates its large-scale application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130736DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
oxygenic photogranules
8
sufficient amounts
8
amounts organic
8
carbon
8
opgs
6
hydrodynamic cultivation
4
cultivation aeration-free
4
aeration-free oxygenic
4
photogranules favored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!