Robotic-Assisted Anastomosis in Orthoplastic Surgery: Preliminary Data.

Handchir Mikrochir Plast Chir

Orthoplastic Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

Published: April 2024

Background: The evolution of microsurgery has relied on advancements in operating microscopes and surgical instruments. Pioneering advancements, however, especially within the domain of "super-microsurgery", challenge the limits of human dexterity by dealing with anastomoses between vessels smaller than 0.8 mm. Based on these premises, the Symani robotic system was designed and developed. This platform utilizes teleoperation and motion-scaled movement to provide surgeons with precision and accuracy in manipulating millimetre and submillimetre-sized anatomical structures. In this study, we present our experience in performing robotic-assisted anastomoses using the Symani Surgical System in free flap reconstruction.

Methods: We present a comprehensive analysis of all reconstructive procedures involving microsurgical free flaps performed using the Symani robotic platform at the orthoplastic unit of the Rizzoli Orthopaedic Institute from 1 October 2022 to 1 May 2023.

Results: Sixteen microsurgical reconstructions using free flaps were performed, involving a total of 40 anastomoses on vessel calibres ranging from 0.6 mm to 2.5 mm. In each case, the anastomosis was executed with the assistance of the robotic platform, achieving a 100+% success rate in patent anastomoses, and no major complications occurred.Conclusion The Symani system has proven to be safe and reliable in performing microsurgical anastomoses. While this platform demonstrated successful in various vessel calibres, its most promising potential lies in anastomoses below the size of a millimetre. Larger patient cohorts and extended investigation periods will be essential to explore whether robotics in microsurgery offers advantages across all microsurgical procedures or should be reserved for selected cases.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2285-4597DOI Listing

Publication Analysis

Top Keywords

symani robotic
8
free flaps
8
flaps performed
8
robotic platform
8
vessel calibres
8
anastomoses
6
robotic-assisted anastomosis
4
anastomosis orthoplastic
4
orthoplastic surgery
4
surgery preliminary
4

Similar Publications

Robotic-assisted surgery has revolutionised modern medicine, enabling greater precision and control, particularly in microsurgical procedures. This systematic review evaluates the current state of robotic-assisted surgery across various specialties, focusing on four major robotic systems: Symani, Da Vinci, ZEUS, and MUSA. The review systematically analyses the effectiveness of these systems in performing vascular, lymphatic, and nervous anastomoses, comparing key metrics such as procedure time, success rates, and learning curves against manual techniques.

View Article and Find Full Text PDF

Implementation Strategies and Ergonomic Factors in Robot-assisted Microsurgery.

J Robot Surg

January 2025

BG Trauma Center Ludwigshafen, Department for Plastic, Hand and Reconstructive Surgery, Department of Plastic Surgery for the Heidelberg University, Ludwig-Guttmann-Straße 13, 67071, Ludwigshafen, Germany.

Robot-assisted surgery represents a significant innovation in reconstructive microsurgery, providing enhanced precision and reduced surgeon fatigue. This study examines the integration of robotic assistance in a series of 85 consecutive robot-assisted microsurgical (RAMS) operations. It aims to evaluate changes in the integration of RAMS during the implementation phase in a single institution.

View Article and Find Full Text PDF

Robot-assisted microsurgery: a single-center experience of 100 cases.

J Robot Surg

December 2024

Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany.

The adoption of robot-assisted microsurgery (RAMS) is a cutting-edge advancement in the realm of microsurgery. The Symani Surgical System is CE approved and has recently gained FDA approval. It provides tremor elimination, motion scaling and improved ergonomics.

View Article and Find Full Text PDF

Hands-On Robotic Microsurgery: Robotic-Assisted Free Flap Reconstruction of the Upper Extremity.

J Clin Med

December 2024

BG Trauma Center Ludwigshafen, Department of Hand, Plastic and Reconstructive Surgery, Heidelberg University, Ludwig-Guttmann-Straße 13, 67071 Ludwigshafen, Germany.

: Robot-assisted microsurgery (RAMS) has been introduced into the field of plastic surgery in recent years. It potentially offers enhanced precision and control compared to traditional methods, which is crucial for complex microvascular tasks in free flap reconstructions. We aim to analyze our experiences with robotic-assisted microsurgery in the field of upper extremity free flap reconstruction.

View Article and Find Full Text PDF

Robotic-Assisted Microsurgery in Gender-Affirming Phalloplasty.

Ann Plast Surg

January 2025

Centre for Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Muenster, Muenster, Germany.

Genital gender-affirming masculinization surgeries require handling of small vessels and nerves handling in deep planes. Since the introduction of the Symani Surgical System for robotic-assisted microsurgery in clinical practice, its value in handling small and deep vessels via additional distal motion axes, motion scaling, and tremor elimination has been demonstrated. We combined the Symani with the robotic exoscope RoboticScope to achieve maximum flexibility and ergonomics for the microsurgeon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!