In this study, we introduce a hydrogel-polymer microsphere (HPM) composite material constituted of PVA, glycerin, and polymer microspheres obtained from Pickering emulsions that are capable of adsorbing Cu ions. The obtained HPM composite is soft, flexible, can be fully saturated with Cu ions, and exhibits a reversible color transition from blue to black upon electrode contact or interaction with a reducing agent, due to in situ generation of copper nanoparticles (Cu-NPs). Because of the color contrast between the locally generated Cu-NPs and the background, the HPM can be used as substrate for stamping different shapes or writing text. Further, the surface can be erased by an acidic solution, which makes it interesting as flexible write-erase displays. A second feature of the HPM is that it can function as a fluorescence detector of cyanide ions. An HPM whose surface has been stamped with an electrode, upon contacting an aqueous solution containing cyanide ions, begins fluorescing a yellow-green light around the patterned area. The displayed luminescence is irreversible and is preserved even after HPM's drying or lyophilization. This work lays a foundational framework for future exploration of the HPM composites in various technological applications, for sensing, circuit printing, and flexible displays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.04.147DOI Listing

Publication Analysis

Top Keywords

write-erase displays
8
hpm composite
8
ions hpm
8
cyanide ions
8
hpm
6
reversible cu-nanoparticle
4
cu-nanoparticle formation
4
formation soft
4
soft hydrogel
4
hydrogel composites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!