Solution pH is one of the primary factors affecting the efficiency of water decontamination. Although the influence of pH on oxidants activation, catalyst activity, and reactive oxygen species have been widely explored, there is still a scarcity of systemic studies on the changes in the oxidation behavior of organic pollutants at different pH levels. Herein, we report the influence laws of pH on the forms, reactivities, active sites, degradation pathways, and products toxicities of organic pollutants. Changes in pH cause the protonation or deprotonation of organic pollutants and further affect their forms and chemistry (e.g., electrostatic force, hydrophobicity, and oxidation potential). The oxidation potential of organic pollutants follows the order: protonated form > pristine form > deprotonated form. Moreover, protonation or deprotonation can modify the active sites and degradation pathways of organic pollutants, wherein deprotonation renders them more susceptible to electrophilic attack, while protonation reduces their activity against electrophilic and nucleophilic attacks. Additionally, pH adjustments can modify the degradation pathway and the toxicity of transformation products. Overall, pH changes can affect the oxidation fate of organic pollutants by altering their structure, which distinguishes it from the effect of pH on oxidants or oxidant activation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!