AI Article Synopsis

  • * The study uses various methods to analyze how adding tie-chains between crystalline domains can enhance electrical conductivity, achieving an impressive 4810 S cm without sacrificing the Seebeck coefficient or significantly increasing thermal conductivity.
  • * The successful approach provides a pathway for improving thermoelectric performance in a variety of semicrystalline conjugated polymers, addressing traditional trade-offs in optimizing these materials.

Article Abstract

Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm, which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 µW m K are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310480DOI Listing

Publication Analysis

Top Keywords

thermoelectric performance
12
conjugated polymers
8
model system
8
thermoelectric properties
8
crystalline domains
8
thermoelectric
6
enhancing conductivity
4
conductivity thermoelectric
4
performance semicrystalline
4
semicrystalline conducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!