Genetically engineered microorganisms (GEMs) represent a new paradigm in our ability to address the needs of a growing, changing world. GEMs are being used in agriculture, food production and additives, manufacturing, commodity and noncommodity products, environmental remediation, etc., with even more applications in the pipeline. Along with modern advances in genome-manipulating technologies, new manufacturing processes, markets, and attitudes are driving a boom in more products that contain or are derived from GEMs. Consequentially, researchers and developers are poised to interact with biotechnology regulatory policies that have been in effect for decades, but which are out of pace with rapidly changing scientific advances and knowledge. In the United States, biotechnology is regulated by multiple agencies with overlapping responsibilities. This poses a challenge for both developers and regulators to simultaneously allow new innovation and products into the market while also ensuring their safety and efficacy for the public and environment. This article attempts to highlight the various factors that interact between regulatory policy and development of GEMs in the United States, with perspectives from both regulators and developers. We present insights from a 2022 workshop hosted at the University of California, Berkeley that convened regulators from U.S. regulatory agencies and industry developers of various GEMs and GEM-derived products. We highlight several new biotechnologies and applications that are driving innovation in this space, and how regulatory agencies evaluate and assess these products according to current policies. Additionally, we describe recent updates to regulations that incorporate new technology and knowledge and how they can adapt further to effectively continue regulating for the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106772PMC
http://dx.doi.org/10.1021/acssynbio.4c00048DOI Listing

Publication Analysis

Top Keywords

united states
12
genetically engineered
8
engineered microorganisms
8
regulatory agencies
8
gems
5
products
5
perspectives genetically
4
microorganisms regulation
4
regulation united
4
states genetically
4

Similar Publications

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.

View Article and Find Full Text PDF

The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.

View Article and Find Full Text PDF

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

The development of catalytic methods for the synthesis of enantiopure saturated heterocycles has been a long-standing challenge in asymmetric catalysis. We describe the first highly enantioselective palladium-catalyzed βC(sp)-H arylation and olefination of lactams for the preparation of various chiral N-heterocycles bearing quaternary carbon centers. The presence of strongly electron-withdrawing groups on the chiral bifunctional MPAThio ligand is crucial to the reactivity of weakly coordinating lactams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!