Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of this reconstruction is that most system-level components associated with the ctenophore organization result from convergent evolution. In other words, the ctenophore lineage independently evolved as high animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians. Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal. However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable morphological and functional diversity is one of the hot topics in biological research, with many anticipated surprises.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3642-8_1 | DOI Listing |
Zootaxa
July 2024
National Museum of Natural History; Smithsonian Institution; Department of Invertebrate Zoology; Washington; DC; 20560 USA; NOAA Fisheries; Office of Science & Technology; National Systematics Laboratory; Washington; DC; 20560 USA.
Proc Natl Acad Sci U S A
November 2024
Michael Sars Centre, University of Bergen, Bergen 5008, Norway.
Reverse development, or the ability to rejuvenate by morphological reorganization into the preceding life cycle stage is thought to be restricted to a few species within Cnidaria. To date, is the only known species capable of undergoing reverse development after the onset of sexual reproduction. Here, we demonstrate that the ctenophore is capable of reversal from mature lobate to early cydippid when fed following a period of stress.
View Article and Find Full Text PDFSci Rep
September 2024
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, P.O.B. 2336, 3102201, Haifa, Israel.
Most host-parasite associations are explained by phylogenetically conservative capabilities for host utilization, and therefore parasite switches between distantly related hosts are rare. Here we report the first evidence of a parasitic spillover of the burrowing sea anemone Edwardsiella carnea from the invasive ctenophore Mnemiopsis leidyi to two scyphozoan hosts: the native Mediterranean barrel jellyfish Rhizostoma pulmo and the invasive Indo-Pacific nomad jellyfish Rhopilema nomadica, collected from the Eastern Mediterranean Sea. Edwardsiella carnea planulae found in these jellyfish were identified using molecular analyses of the mitochondrial 16S and nuclear 18S rRNA genes.
View Article and Find Full Text PDFPLoS One
July 2024
Departamento de Recursos del Mar, Cinvestav Mérida, Mérida, Yucatán, México.
Gelatinous zooplankton constitutes a polyphyletic group with a convergent evolutionary history and poorly known biogeographical patterns. In the Gulf of Mexico, a region with complex geological, hydrological, and biotic histories, the study of this group has been limited to taxonomical and ecological aspects. In this study, we implemented a track analysis to identify distributional patterns of gelatinous zooplankton in the Gulf of Mexico and adjacent waters based on a dataset of 6067 occurrence records corresponding to Hydrozoa, Scyphozoa, Cubozoa, Ctenophora, Chaetognatha, Thaliacea, and Appendicularia.
View Article and Find Full Text PDFNeural Dev
June 2024
Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!