Reduction of the harmful NO pollutants emitted from the ship engines using high-pressure selective catalytic reduction system.

Environ Sci Pollut Res Int

Department of Marine Engineering, Maritime Faculty, Dokuz Eylul University, Tınaztepe Campus, Buca, Izmir, 35390, Türkiye.

Published: May 2024

Various techniques are used to reduce harmful pollutants such as NO emissions from ships. Selective catalyst reduction (SCR) systems are the most effective technique used to reduce NO emissions. In this study, the effects of an SCR reactor on NO emissions and performance in high-pressure selective catalytic reduction (HP-SCR) systems were investigated numerically. In numerical studies, the effects of SCR system diameter, output form, catalyst activation energy, mixing zone length, and location were investigated as parametric, and the most suitable system geometry was determined. The effects of geometric parameters and catalyst type on emission and performance such as NO reduction, NH slip, velocity, and pressure loss were investigated. It was determined that with increasing system diameter, whereas the NO reduction performance increased depending on exhaust velocity, the pressure drop decreased, and the most suitable system diameter was determined as 780 mm. Furthermore, the obtained results showed that the performance of NO reduction decreased after 2 × 10 kJ/kmol activation energy, and the most suitable SCR output form was conical geometry. In terms of the environment, this study will contribute to achieving the UN Sustainable Development Goals such as climate action (SDG 13).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133205PMC
http://dx.doi.org/10.1007/s11356-024-33439-yDOI Listing

Publication Analysis

Top Keywords

system diameter
12
harmful pollutants
8
high-pressure selective
8
selective catalytic
8
catalytic reduction
8
effects scr
8
output form
8
activation energy
8
suitable system
8
performance reduction
8

Similar Publications

Background: Intrauterine growth restriction (IUGR) is a severe condition in which the fetus fails to reach its genetically predetermined growth potential, impairing prenatal development and predisposing individuals to postnatal consequences that may persist into adulthood. Although fetal mechanisms such as the brain-sparing effect have been proposed to protect the brain against IUGR-related deficits, the extent of this protection remains unclear.

Objective: To conduct a systematic review that demonstrates prenatal morphofunctional abnormalities in the brain of individuals with IUGR.

View Article and Find Full Text PDF

Enhanced bioaccessibility of cyclolinopeptides via zein-cyclodextrin nanoparticles: Simulated gastrointestinal digestion and cellular uptake study.

Food Chem

January 2025

Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China. Electronic address:

Cyclolinopeptides (CLS) are hydrophobic cyclic peptides in flaxseed with multiple bioactive activities. This study developed zein (Z)-cyclodextrin (CD) binary nanoparticles (NPs) as an oral delivery system for CLS. Z-CD NP had a smaller diameter (D) and better encapsulation effect on CLS.

View Article and Find Full Text PDF

CT Predictors of Angiolymphatic Invasion in Non-Small Cell Lung Cancer 30 mm or Smaller.

Radiology

January 2025

From the Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China (Q.S., P.L., J.Z.); and Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029 (Q.S., P.L., R.Y., D.F.Y., C.I.H.).

Background Angiolymphatic invasion (ALI) is an important prognostic indicator in non-small cell lung cancer (NSCLC). However, few studies focus on radiologic features for predicting ALI in patients with early-stage NSCLCs 30 mm or smaller. Purpose To identify radiologic features for predicting ALI in NSCLCs 30 mm or smaller in maximum diameter.

View Article and Find Full Text PDF

Assessing drywell designs for managed aquifer recharge via canals and repurposed wells.

Sci Rep

January 2025

USDA, ARS, Sustainable Agricultural Water Systems (SAWS) Unit, UC Davis, 239 Hopkins Road, Davis, CA, 95616, USA.

This study explores innovative drywell designs for managed aquifer recharge (MAR) in agricultural settings, focusing on smaller diameter and deeper drywells, including the repurposing of dried or abandoned wells. Numerical simulations assessed the impact of drywell diameter (5-120 cm), depth (15-55 m), screen height, and subsurface heterogeneity on infiltration (I) and recharge (R) volumes over a one-year period under constant head conditions. Results indicate that smaller diameter drywells can effectively infiltrate and recharge significant water volumes.

View Article and Find Full Text PDF

This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!