Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work investigates the impact on cosmic ray exposures to aircrew due to changing flight routes operated in the context of the recent conflict between Ukraine and the Russian Federation. All analyses were done based on Paris-Tokyo and Tokyo-Paris flights taken as examples, and differences in radiation exposures were quantified by comparing the situation before and after the beginning of the conflict. Regarding space weather scenarios, a quiet solar period and an extreme solar event (ground level enhancement (GLE) 5) were considered in the study. Analyses showed that the new Paris-Tokyo flight route established after the beginning of the conflict results in a smaller radiation dose to aircrew than that operated before the conflict, particularly during solar events. In contrast, for Tokyo-Paris flights the new high-latitude route crossing the Atlantic Ocean and North America increases the dose significantly (+ 50% in the worst case). Although this analysis is limited only to flights connecting Paris and Tokyo, it allowed for an evaluation of the consequences of new routes (particularly polar ones) on ambient dose equivalent values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00411-024-01066-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!