The search for low-diffusion barriers and high-capacity anode materials is considered a key step in boosting the efficiency of metal-ion batteries. Herein, we investigate the impact of a series of conducting polymers (CPs), namely, polyacetylene (PA), polypyrrole (PP), poly--phenylene (PPPh), and polythiophene (PT), on enhancing the material design and anodic performance of boron nitride nanosheet (BNNS)-based Li-ion and Na-ion batteries. For this purpose, first principle DFT simulations, utilizing both clustered and periodic models, are systematically performed to assess the stability of such nanostructures and their electronic behavior as potential anodic materials. It is revealed that frontier molecular orbitals calculated for BNNSs are stabilized upon association with the series of CPs, resulting in a reduction in the energy gaps of CP-BNNSs by nearly 50%, which in turn improves the charge transfer properties and cell reaction kinetics. A remarkable improvement in the cell voltage is predicted for PP and PT functionalized BNNSs, reaching approximately 3.5 V for Li and 3.0 V for Na ions. The outcome of the study emphasizes the influence of the size of metal ions, whether mono- or di-valent, and the nature of adsorbed conducting polymers. Manipulating the electronic features of boron nitride nanostructured surfaces through non-covalent functionalization with conducting polymers could pave the way for the design of highly efficient energy storage anodic CP-BNNS-based systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp06074hDOI Listing

Publication Analysis

Top Keywords

boron nitride
12
conducting polymers
12
anodic
4
anodic voltage
4
voltage performance
4
conducting
4
performance conducting
4
conducting polymer-functionalized
4
polymer-functionalized boron
4
nitride nanosheets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!