Enhancing Single Photon Emission Purity via Design of van der Waals Heterostructures.

Nano Lett

Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States.

Published: May 2024

Quantum emitters are essential components of quantum photonic circuitry envisioned beyond the current optoelectronic state-of-the-art. Two dimensional materials are attractive hosts for such emitters. However, the high single photon purity required is rarely realized due to the presence of spectrally degenerate classical light originating from defects. Here, we show that design of a van der Waals heterostructure effectively eliminates this spurious light, resulting in purities suitable for a variety of quantum technological applications. Single photon purity from emitters in monolayer WSe increases from 60% to 92% by incorporating this monolayer in a simple graphite/WSe heterostructure. Fast interlayer charge transfer quenches a broad photoluminescence background by preventing radiative recombination through long-lived defect bound exciton states. This approach is generally applicable to other 2D emitter materials, circumvents issues of material quality, and offers a path forward to achieve the ultrahigh single photon purities ultimately required for photon-based quantum technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00683DOI Listing

Publication Analysis

Top Keywords

single photon
16
design van
8
van der
8
der waals
8
photon purity
8
enhancing single
4
photon
4
photon emission
4
emission purity
4
purity design
4

Similar Publications

We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.

View Article and Find Full Text PDF

Exponentially Enhanced Scheme for the Heralded Qudit Greenberger-Horne-Zeilinger State in Linear Optics.

Phys Rev Lett

December 2024

Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.

High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.

View Article and Find Full Text PDF

Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.

View Article and Find Full Text PDF

Enhanced Light-Matter Interaction with Bloch Surface Wave Modulated Plasmonic Nanocavities.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.

Strong coupling between nanocavities and single excitons at room temperature is important for studying cavity quantum electrodynamics. However, the coupling strength is highly dependent on the spatial light-confinement ability of the cavity, the number of involved excitons, and the orientation of the electric field within the cavity. By constructing a hybrid cavity with a one-dimensional photonic crystal cavity and a plasmonic nanocavity, we effectively improve the quality factor, reduce the mode volume, and control the direction of the electric field using Bloch surface waves.

View Article and Find Full Text PDF

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Microadditive manufacturing has revolutionized the production of complex, nano- to microscale components across various fields. This work investigates two-photon (2P) and three-photon (3P) fluorescence imaging, as well as third-harmonic generation (THG) microscopy, to examine periodic microarchitected lattice structures fabricated using multiphoton lithography (MPL). By immersing the structures in refractive index matching fluids, we demonstrate high-fidelity 3D reconstructions of both fluorescent structures using 2P and 3P microscopy as well as low-fluorescence structures using THG microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!