Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 μM lead and 2.5, 5, 10 μM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 μM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055059PMC
http://dx.doi.org/10.3390/toxics12040285DOI Listing

Publication Analysis

Top Keywords

lead cadmium
28
brl-3a cells
12
lead-cadmium-induced apoptosis
12
rat hepatocytes
8
autophagy
8
lead
8
cadmium
8
beclin1 sirna
8
induced apoptosis
8
liver injury
8

Similar Publications

Interactions Between Toxic Metals and Serum Micronutrient Level in Auto-mechanics in Ibadan Metropolis, Nigeria: a Pilot study.

Biol Trace Elem Res

January 2025

Laboratory for Toxicology and Micronutrient Metabolism, Chemical Pathology Department, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Auto-mechanics who often work without safety measures are vulnerable to the harmful effects of toxic metals like lead (Pb) and cadmium (Cd). These toxic metals exert their deleterious effect by interacting with the micronutrients at their primary site of action. This study aimed to investigate the effects of toxic metal exposure on serum micronutrient levels of auto-mechanics in Nigeria.

View Article and Find Full Text PDF

Nowadays rice has become one of the world's staple foods. Rice in southern China is also a staple food for everyone, however, with the development of China's industrialization model, many industrial areas may be contaminated by heavy metals, leading to contamination of the agricultural areas. With the development of recent years, Nanning has become a heavily industrial development area, and rice is also a favourite staple food.

View Article and Find Full Text PDF

Background: Chronic stress, characterized by sustained activation of physiological stress response systems, is a key risk factor for numerous health conditions. Allostatic load (AL), a biomarker of cumulative physiological stress, offers a quantitative measure of this burden. Lifestyle habits such as alcohol consumption and smoking, alongside environmental exposures to toxic metals like lead, cadmium, and mercury, were individually implicated in increasing AL.

View Article and Find Full Text PDF

Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes.

View Article and Find Full Text PDF

The Mediterranean Sea is an intercontinental marine environment renowned for its biodiversity and ecological significance. However, it is also one of the most polluted seas globally with significant levels of microplastics and heavy metals among other emerging contaminants. In Lebanon, inadequate waste management infrastructure and unregulated industrial discharges have exacerbated water quality deterioration by introducing these complex contaminants into surface and seawater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!